Spaces:
Sleeping
Sleeping
File size: 2,182 Bytes
60af537 57419d8 9b2c5e1 57419d8 d4cb7c6 57419d8 6c34a8c c5224aa 57419d8 c3d8605 f7b8e0e c3d8605 aca98af 29a24a4 aca98af 29a24a4 aca98af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
def process_image(image, yolo_versions=["yolov5"]):
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
return result_images
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
if sample_name in sample_images:
try:
return Image.open(sample_images[sample_name]) # Load and return the image
except Exception as e:
print(f"Error loading image: {e}")
return None
return None
with gr.Blocks() as interface:
gr.Markdown("# Visualizing Key Features with Explainable AI")
gr.Markdown("Upload an image or select a sample image to visualize object detection.")
with gr.Row():
uploaded_image = gr.Image(type="pil", label="Upload an Image")
sample_selection = gr.Dropdown(
choices=list(sample_images.keys()),
label="Select a Sample Image",
type="value",
)
sample_display = gr.Image(label="Sample Image Preview", value=None)
sample_selection.change(fn=load_sample_image, inputs=sample_selection, outputs=sample_display)
selected_models = gr.CheckboxGroup(
choices=["yolov3", "yolov8s"],
value=["yolov5"], # Default model
label="Select Model(s)",
)
result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)
gr.Button("Run").click(
fn=process_image,
inputs=[uploaded_image, selected_models],
outputs=result_gallery,
)
interface.launch() |