Spaces:
Sleeping
Sleeping
Commit
·
6c34a8c
1
Parent(s):
a83e547
Debug: refactor src
Browse files- app.py +2 -2
- requirements.txt +0 -1
- yolov8.py +29 -67
app.py
CHANGED
@@ -14,7 +14,7 @@ def process_image(image, yolo_versions=["yolov5"]):
|
|
14 |
for yolo_version in yolo_versions:
|
15 |
if yolo_version == "yolov5":
|
16 |
result_images.append(xai_yolov5(image))
|
17 |
-
elif yolo_version == "
|
18 |
result_images.append(xai_yolov8n(image))
|
19 |
else:
|
20 |
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
|
@@ -26,7 +26,7 @@ interface = gr.Interface(
|
|
26 |
inputs=[
|
27 |
gr.Image(type="pil", label="Upload an Image"),
|
28 |
gr.CheckboxGroup(
|
29 |
-
choices=["yolov5", "
|
30 |
value=["yolov5"], # Set default selection to YOLOv5
|
31 |
label="Select Model(s)",
|
32 |
)
|
|
|
14 |
for yolo_version in yolo_versions:
|
15 |
if yolo_version == "yolov5":
|
16 |
result_images.append(xai_yolov5(image))
|
17 |
+
elif yolo_version == "yolov8s":
|
18 |
result_images.append(xai_yolov8n(image))
|
19 |
else:
|
20 |
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
|
|
|
26 |
inputs=[
|
27 |
gr.Image(type="pil", label="Upload an Image"),
|
28 |
gr.CheckboxGroup(
|
29 |
+
choices=["yolov5", "yolov8s", "yolov10"],
|
30 |
value=["yolov5"], # Set default selection to YOLOv5
|
31 |
label="Select Model(s)",
|
32 |
)
|
requirements.txt
CHANGED
@@ -8,4 +8,3 @@ grad-cam==1.4.8
|
|
8 |
gradio
|
9 |
ultralytics
|
10 |
torchcam
|
11 |
-
YOLOv8-Explainer
|
|
|
8 |
gradio
|
9 |
ultralytics
|
10 |
torchcam
|
|
yolov8.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
@@ -12,17 +11,18 @@ import gradio as gr
|
|
12 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
13 |
|
14 |
def parse_detections(results):
|
|
|
15 |
boxes, colors, names = [], [], []
|
16 |
-
for
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
return boxes, colors, names
|
27 |
|
28 |
def draw_detections(boxes, colors, names, img):
|
@@ -34,12 +34,15 @@ def draw_detections(boxes, colors, names, img):
|
|
34 |
lineType=cv2.LINE_AA)
|
35 |
return img
|
36 |
|
37 |
-
|
38 |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
39 |
cam = EigenCAM(model, target_layers)
|
40 |
grayscale_cam = cam(tensor)[0, :, :]
|
41 |
img_float = np.float32(rgb_img) / 255
|
|
|
|
|
42 |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
|
|
|
|
43 |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
44 |
for x1, y1, x2, y2 in boxes:
|
45 |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
@@ -48,69 +51,28 @@ def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
|
48 |
|
49 |
return cam_image, renormalized_cam_image
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
model =
|
54 |
model.eval()
|
55 |
-
|
56 |
-
# Check if GPU is available and use it
|
57 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
58 |
-
model.to(device)
|
59 |
|
60 |
target_layers = [model.model.model[-2]] # Grad-CAM target layer
|
61 |
-
|
62 |
-
# Process the image through the model
|
63 |
-
results = model([image])
|
64 |
-
|
65 |
-
# If results are a list, extract the first element (detected results)
|
66 |
-
if isinstance(results, list):
|
67 |
-
results = results[0] # Extracting the first result (if list)
|
68 |
-
|
69 |
-
# Ensure that outputs are in tensor form
|
70 |
-
logits = results.pred[0] # Get the prediction tensor from the results
|
71 |
|
72 |
-
#
|
73 |
-
|
|
|
74 |
detections_img = draw_detections(boxes, colors, names, image.copy())
|
75 |
-
|
76 |
-
# Prepare
|
77 |
img_float = np.float32(image) / 255
|
78 |
transform = transforms.ToTensor()
|
79 |
-
tensor = transform(img_float).unsqueeze(0)
|
80 |
-
|
81 |
-
#
|
82 |
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
|
83 |
|
84 |
-
# Combine
|
85 |
final_image = np.hstack((image, cam_image, renormalized_cam_image))
|
86 |
-
|
87 |
-
# Return final image and a caption
|
88 |
-
caption = "Results using YOLOv8n"
|
89 |
return Image.fromarray(final_image), caption
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
from YOLOv8_Explainer import yolov8_heatmap, display_images
|
94 |
-
|
95 |
-
def xai_yolov8n(image):
|
96 |
-
model = yolov8_heatmap(
|
97 |
-
weight="yolov8n.pt",
|
98 |
-
conf_threshold=0.4,
|
99 |
-
device = "cpu",
|
100 |
-
method = "EigenCAM",
|
101 |
-
layer=[10, 12, 14, 16, 18, -3],
|
102 |
-
backward_type="all",
|
103 |
-
ratio=0.02,
|
104 |
-
show_box=True,
|
105 |
-
renormalize=False,
|
106 |
-
)
|
107 |
-
|
108 |
-
# Pass the NumPy array to the model
|
109 |
-
imagelist = model(image) # Use the image array directly
|
110 |
-
|
111 |
-
# Display the resulting images
|
112 |
-
# Pass the NumPy array to the model
|
113 |
-
imagelist = model(image) # Use the image array directly
|
114 |
-
|
115 |
-
# Display the resulting images
|
116 |
-
print(imagelist)
|
|
|
|
|
1 |
import torch
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
11 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
12 |
|
13 |
def parse_detections(results):
|
14 |
+
detections = results.pandas().xyxy[0].to_dict()
|
15 |
boxes, colors, names = [], [], []
|
16 |
+
for i in range(len(detections["xmin"])):
|
17 |
+
confidence = detections["confidence"][i]
|
18 |
+
if confidence < 0.2:
|
19 |
+
continue
|
20 |
+
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
|
21 |
+
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
|
22 |
+
name, category = detections["name"][i], int(detections["class"][i])
|
23 |
+
boxes.append((xmin, ymin, xmax, ymax))
|
24 |
+
colors.append(COLORS[category])
|
25 |
+
names.append(name)
|
26 |
return boxes, colors, names
|
27 |
|
28 |
def draw_detections(boxes, colors, names, img):
|
|
|
34 |
lineType=cv2.LINE_AA)
|
35 |
return img
|
36 |
|
|
|
37 |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
38 |
cam = EigenCAM(model, target_layers)
|
39 |
grayscale_cam = cam(tensor)[0, :, :]
|
40 |
img_float = np.float32(rgb_img) / 255
|
41 |
+
|
42 |
+
# Generate Grad-CAM
|
43 |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
44 |
+
|
45 |
+
# Renormalize Grad-CAM inside bounding boxes
|
46 |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
47 |
for x1, y1, x2, y2 in boxes:
|
48 |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
|
|
51 |
|
52 |
return cam_image, renormalized_cam_image
|
53 |
|
54 |
+
def xai_yolov8s(image):
|
55 |
+
# Load YOLOv8 model
|
56 |
+
model = torch.hub.load('ultralytics/yolov8', 'yolov8s', pretrained=True)
|
57 |
model.eval()
|
58 |
+
model.cpu()
|
|
|
|
|
|
|
59 |
|
60 |
target_layers = [model.model.model[-2]] # Grad-CAM target layer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Run YOLO detection
|
63 |
+
results = model([image])
|
64 |
+
boxes, colors, names = parse_detections(results)
|
65 |
detections_img = draw_detections(boxes, colors, names, image.copy())
|
66 |
+
|
67 |
+
# Prepare input tensor for Grad-CAM
|
68 |
img_float = np.float32(image) / 255
|
69 |
transform = transforms.ToTensor()
|
70 |
+
tensor = transform(img_float).unsqueeze(0)
|
71 |
+
|
72 |
+
# Grad-CAM visualization
|
73 |
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
|
74 |
|
75 |
+
# Combine results
|
76 |
final_image = np.hstack((image, cam_image, renormalized_cam_image))
|
77 |
+
caption = "Results using YOLOv8"
|
|
|
|
|
78 |
return Image.fromarray(final_image), caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|