File size: 2,157 Bytes
60af537
57419d8
9b2c5e1
57419d8
 
 
 
d4cb7c6
57419d8
 
 
 
 
 
 
 
 
6c34a8c
c5224aa
57419d8
 
 
 
b21eb38
 
 
 
 
6263059
e8f8ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

def process_image(image, yolo_versions=["yolov5"]):
    image = np.array(image)
    image = cv2.resize(image, (640, 640))

    result_images = []
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
    return result_images

# Paths to sample images
sample_images = [
    os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    os.path.join(os.getcwd(), "data/xai/sample2.jpg")
]

def load_sample(sample_name):
    if sample_name and sample_name in sample_images:
        return Image.open(sample_images[sample_name])
    return None

interface = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.CheckboxGroup(
            choices=["yolov3", "yolov8s"],
            value=["yolov5"],  # Set the default value (YOLOv5 checked by default)
            label="Select Model(s)",
        ),
        gr.Dropdown(
            choices=list(sample_images.keys()),
            label="Select a Sample Image",
            type="value",
            interactive=True,
        ),
    ],
    outputs=gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500),
    title="Visualising the key image features that drive decisions with our explainable AI tool.",
    description="XAI: Upload an image or select a sample to visualize object detection of your models.",
)

def main_logic(uploaded_image, selected_models, sample_selection):
    # If the user selects a sample image, use that instead of the uploaded one
    if sample_selection:
        image = load_sample(sample_selection)
    else:
        image = uploaded_image

    # Call the processing function
    return process_image(image, selected_models)

interface.launch()