File size: 1,777 Bytes
60af537
57419d8
9b2c5e1
57419d8
 
 
 
d4cb7c6
57419d8
 
6263059
57419d8
 
 
 
 
 
 
6c34a8c
c5224aa
57419d8
 
 
 
6263059
57419d8
 
 
37d1dae
 
 
 
e3b086b
37d1dae
57419d8
140adbe
437ec30
57419d8
37d1dae
4365154
57419d8
 
 
4365154
 
437ec30
 
4365154
437ec30
57419d8
 
e3b086b
 
437ec30
 
57419d8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

def process_image(image, yolo_versions=["yolov5"]):
    # Convert image from PIL to NumPy array
    image = np.array(image)
    image = cv2.resize(image, (640, 640))

    result_images = []
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
    return result_images


interface = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(
            type="pil", 
            label="Upload an Image", 
            interactive=True,
            value=None,  # Default value set to None
        ),
        gr.CheckboxGroup(
            choices=["yolov5", "yolov8s"],
            value=["yolov5"],  # Default value set
            label="Select Model(s)",
            type="value",  # Ensure the value is passed as a list of selected models
        ),
    ],
    outputs=gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500),
    title="Explainable AI for YOLO Models",
    description="Upload an image or select a sample to visualize YOLO object detection with Grad-CAM.",
    examples=[
        [os.path.join(os.getcwd(), "data/xai/sample1.jpeg")],  
        [os.path.join(os.getcwd(), "data/xai/sample2.jpg")],  
    ],
    live=True,
)

# Override the input image function to provide fallback
interface.inputs[0].update(value=None)


if __name__ == "__main__":
    interface.launch()