File size: 9,176 Bytes
4d51c47
449b9ac
dbd2a18
4d51c47
aed0d09
9f0de77
4d51c47
 
 
6492b12
aed0d09
24f4b49
4d51c47
 
c3d8605
dbd2a18
aca98af
6492b12
90ff42e
 
 
aca98af
 
4d51c47
6492b12
4d51c47
fa09b4a
8978982
fa09b4a
8978982
dbd2a18
4d51c47
d00769c
 
d3127bb
4d51c47
8978982
4d51c47
 
 
 
 
 
 
449b9ac
f504910
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd2a18
7b76c30
47e1548
044ddc3
a2ea702
47e1548
 
 
7b76c30
9f0de77
 
 
 
 
5721e34
9f0de77
 
b5d5d16
 
 
9f0de77
4f309dc
65a7a99
 
 
f323ab3
65a7a99
 
 
 
 
 
 
 
 
 
9f0de77
 
 
a3ee2cf
65a7a99
188ba59
9f0de77
 
111100d
65a7a99
 
 
 
 
b5d5d16
6037793
b5d5d16
 
 
 
8d948ee
a91d21f
c77071f
8d948ee
 
 
b5d5d16
634cc88
a3ee2cf
4d51c47
 
dbd2a18
9203d76
 
6037793
6faf002
8d948ee
51edb67
9203d76
4d51c47
 
 
dbd2a18
 
4d51c47
408a665
 
 
4d51c47
 
b30ea65
dbd2a18
ad84640
 
4d51c47
ad84640
dbd2a18
 
4d51c47
 
 
dbd2a18
c602862
 
dbd2a18
 
 
4d51c47
 
 
 
dbd2a18
fc9d60f
7f898ee
8978982
634cc88
4d51c47
dbd2a18
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
1cd1f16
b0e3a7f
1ba886a
 
a91d21f
5f0441b
a91d21f
5f0441b
1ba886a
2fa8b0f
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb40f87
 
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd2a18
4d51c47
2872d33
4d51c47
6fb2f90
449b9ac
4d51c47
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

# Sample images directory
sample_images = {
    "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    "Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}

def load_sample_image(sample_name):
    """Load a sample image based on user selection."""
    image_path = sample_images.get(sample_name)
    if image_path and os.path.exists(image_path):
        return Image.open(image_path)
    return None

def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8):
    """Process the image using selected YOLO models."""
    # Load sample or uploaded image
    if uploaded_image is not None:
        image = uploaded_image
    else:
        image = load_sample_image(sample_choice)

    # Preprocess image
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []

    # Apply selected models
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
    return result_images

def view_model(selected_models):
    """Generate Netron visualization for the selected models."""
    netron_html = ""
    for model in selected_models:
        if model == "yolov5":
            netron_html = f"""
            <iframe 
                src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx" 
                width="100%" 
                height="800" 
                frameborder="0">
            </iframe>
            """
    return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"

# CSS to style the Gradio components and HTML content
custom_css = """
body {
    background-image: 
        linear-gradient(to right, transparent 39px, #a05252 1px, transparent 40px), /* Vertical dashed lines */
    background-size: 1800px 1800px; /* Grid cell size */
    height: 100%; /* Ensure body height is 100% of the viewport */
    margin: 0; /* Remove default margin */
    overflow-y: auto; /* Allow vertical scrolling if needed */
}
.custom-row {
    display: flex;
    justify-content: center;
    padding: 20px;
}
.custom-button {
    background-color: #6a1b9a;
    color: white;
    font-size: 14px;  /* Reduced font size */
    width: 120px;     /* Reduced width */
    border-radius: 8px;
    cursor: pointer;
}

/* Custom border styles for all Gradio components */
.gradio-container, .gradio-row, .gradio-column, .gradio-input, .gradio-image, .gradio-checkgroup, .gradio-button, .gradio-markdown {
    border: 3px #800000 !important;  /* Border width and color */
    border-radius: 8px !important;      /* Rounded corners */
}

/* Additional customizations for images to enhance visibility of the border */
.gradio-image img {
    border-radius: 8px !important;
    border: 3px solid black !important;  /* Border for image */
}

/* Custom Row for images and buttons */
.custom-row img {
    border-radius: 10px;
    box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}

#highlighted-text {
    font-weight: bold;
    color: #1976d2;
}

.gradio-block {
    max-height: 100vh;  /* Allow scrolling within the Gradio blocks */
    overflow-y: auto;   /* Enable scrolling for the content if it overflows */
}
#neural-vista-title {
    color: #800000 !important;  /* Purple color for the title */
    font-size: 32px;           /* Adjust font size as needed */
    font-weight: bold;
    text-align: center;
}
#neural-vista-text {
    color: #800000  !important;  /* Purple color for the title */
    font-size: 18px;           /* Adjust font size as needed */
    font-weight: bold;
    text-align: center;
}

"""

# Then in the Gradio interface:

with gr.Blocks(css=custom_css) as interface:
   
    gr.HTML("""
  <span style="color: #800000; font-family: 'Papyrus', cursive; font-weight: bold; font-size: 32px;">NeuralVista</span><br><br>

    
     <span style="color: black; font-family: 'Papyrus', cursive; font-size: 18px;">A harmonious framework of tools ☼ designed to illuminate the inner workings of AI.</span>
""")
    
    # Default sample
    default_sample = "Sample 1"

    with gr.Row():
        # Left side: Sample selection and image upload
        with gr.Column():
            sample_selection = gr.Radio(
                choices=list(sample_images.keys()),
                label="Select a Sample Image",
                value=default_sample,
            )

            upload_image = gr.Image(
                label="Upload an Image",
                type="pil",  
            )

            selected_models = gr.CheckboxGroup(
                choices=["yolov5", "yolov8s"],
                value=["yolov5"],
                label="Select Model(s)",
            )
            #with gr.Row(elem_classes="custom-row"):
            run_button = gr.Button("Run", elem_classes="custom-button")


        with gr.Column():
            sample_display = gr.Image(
                value=load_sample_image(default_sample),  
                label="Selected Sample Image",
            )


    gr.HTML("""<span style="font-family: 'Papyrus', cursive; font-size: 14px;">The visualization demonstrates object detection and interpretability. Detected objects are highlighted with bounding boxes, while the heatmap reveals regions of focus, offering insights into the model's decision-making process.</span>""")
    # Results and visualization
    with gr.Row(elem_classes="custom-row"):
        result_gallery = gr.Gallery(
            label="Results",
            rows=1, 
            height="auto",       # Adjust height automatically based on content
            columns=1 ,
            object_fit="contain"
        ) 
        netron_display = gr.HTML(label="Netron Visualization")

    # Update sample image
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )
    

    gr.HTML("""
<span style="font-family: 'Papyrus', cursive; font-size: 14px;">
    <span style="color: #800000 ;">Concept Discovery</span> is the process of uncovering the hidden, high-level features that a deep learning model has learned. It provides a way to understand the essence of its internal representations, akin to peering into the mind of the model and revealing the meaningful patterns it detects in the data.
    <br><br>
    <span style="color: #800000 ;">Deep Feature Factorization</span> (DFF) serves as a tool for breaking down these complex features into simpler, more interpretable components. By applying matrix factorization on activation maps, it untangles the intricate web of learned representations, making it easier to comprehend what the model is truly focusing on. Together, these methods bring us closer to understanding the underlying logic of neural networks, shedding light on the often enigmatic decisions they make.
</span>
""")

    with gr.Row(elem_classes="custom-row"):
        dff_gallery = gr.Gallery(
            label="Deep Feature Factorization",
            rows=2,          # 8 rows
            columns=4,       # 1 image per row
            object_fit="fit",
            height="auto"    # Adjust as needed
        ) 

    # Multi-threaded processing
    def run_both(sample_choice, uploaded_image, selected_models):
        results = []
        netron_html = ""

        # Thread to process the image
        def process_thread():
            nonlocal results
            target_lyr = -5 
            n_components = 8
            results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8)

        # Thread to generate Netron visualization
        def netron_thread():
            nonlocal netron_html
            gr.HTML("""
            Generated abstract visualizations of model""")
            netron_html = view_model(selected_models)

        # Launch threads
        t1 = threading.Thread(target=process_thread)
        t2 = threading.Thread(target=netron_thread)
        t1.start()
        t2.start()
        t1.join()
        t2.join()
        image1, text, image2 = results[0]
        if isinstance(image2, list):
            # Check if image2 contains exactly 8 images
            if len(image2) == 8:
                print("image2 contains 8 images.")
            else:
                print("Warning: image2 does not contain exactly 8 images.")
        else:
            print("Error: image2 is not a list of images.")
        return [(image1, text)], netron_html, image2

    # Run button click
    run_button.click(
        fn=run_both,
        inputs=[sample_selection, upload_image, selected_models],
        outputs=[result_gallery, netron_display, dff_gallery],
    )

# Launch Gradio interface
if __name__ == "__main__":
    interface.launch(share=True)