File size: 8,554 Bytes
4d51c47
449b9ac
dbd2a18
4d51c47
aed0d09
9f0de77
4d51c47
 
 
6492b12
aed0d09
24f4b49
4d51c47
 
c3d8605
dbd2a18
aca98af
6492b12
90ff42e
 
 
aca98af
 
4d51c47
6492b12
4d51c47
fa09b4a
8978982
fa09b4a
8978982
dbd2a18
4d51c47
d00769c
 
d3127bb
4d51c47
8978982
4d51c47
 
 
 
 
 
 
449b9ac
f504910
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd2a18
7b76c30
 
65a7a99
 
d36c505
1fb12c9
d36c505
7b76c30
9f0de77
 
 
 
 
5721e34
9f0de77
 
b5d5d16
 
 
9f0de77
4f309dc
65a7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0de77
 
 
a3ee2cf
65a7a99
188ba59
9f0de77
 
111100d
65a7a99
 
 
 
 
b5d5d16
 
 
 
 
 
8d948ee
 
 
 
 
 
b5d5d16
634cc88
a3ee2cf
4d51c47
 
dbd2a18
9203d76
 
b525512
8d948ee
 
9203d76
4d51c47
 
 
dbd2a18
 
4d51c47
408a665
 
 
4d51c47
 
b30ea65
dbd2a18
ad84640
 
4d51c47
ad84640
dbd2a18
 
4d51c47
 
 
dbd2a18
c602862
 
dbd2a18
 
 
4d51c47
 
 
 
dbd2a18
8978982
634cc88
4d51c47
dbd2a18
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
1cd1f16
92546a4
8892a41
2fa8b0f
1a32c5b
bb7bf6b
92546a4
 
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb40f87
 
4d51c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd2a18
4d51c47
2872d33
4d51c47
6fb2f90
449b9ac
4d51c47
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

# Sample images directory
sample_images = {
    "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    "Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}

def load_sample_image(sample_name):
    """Load a sample image based on user selection."""
    image_path = sample_images.get(sample_name)
    if image_path and os.path.exists(image_path):
        return Image.open(image_path)
    return None

def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8):
    """Process the image using selected YOLO models."""
    # Load sample or uploaded image
    if uploaded_image is not None:
        image = uploaded_image
    else:
        image = load_sample_image(sample_choice)

    # Preprocess image
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []

    # Apply selected models
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
    return result_images

def view_model(selected_models):
    """Generate Netron visualization for the selected models."""
    netron_html = ""
    for model in selected_models:
        if model == "yolov5":
            netron_html = f"""
            <iframe 
                src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx" 
                width="100%" 
                height="800" 
                frameborder="0">
            </iframe>
            """
    return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"

# CSS to style the Gradio components and HTML content
custom_css = """
body {
    background-position: center;
    background-size: cover;
    background-attachment: fixed;
    height: 100%;  /* Ensure body height is 100% of the viewport */
    margin: 0;
    overflow-y: auto;  /* Allow vertical scrolling */
}
.custom-row {
    display: flex;
    justify-content: center;
    padding: 20px;
}
.custom-button {
    background-color: #6a1b9a;
    color: white;
    font-size: 14px;  /* Reduced font size */
    width: 120px;     /* Reduced width */
    border-radius: 8px;
    cursor: pointer;
}

/* Custom border styles for all Gradio components */
.gradio-container, .gradio-row, .gradio-column, .gradio-input, .gradio-image, .gradio-checkgroup, .gradio-button, .gradio-markdown {
    border: 3px solid black !important;  /* Border width and color */
    border-radius: 8px !important;      /* Rounded corners */
}

/* Additional customizations for images to enhance visibility of the border */
.gradio-image img {
    border-radius: 8px !important;
    border: 3px solid black !important;  /* Border for image */
}

/* Custom Row for images and buttons */
.custom-row img {
    border-radius: 10px;
    box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}

#highlighted-text {
    font-weight: bold;
    color: #1976d2;
}

.gradio-block {
    max-height: 100vh;  /* Allow scrolling within the Gradio blocks */
    overflow-y: auto;   /* Enable scrolling for the content if it overflows */
}
#neural-vista-title {
    color: purple !important;  /* Purple color for the title */
    font-size: 32px;           /* Adjust font size as needed */
    font-weight: bold;
    text-align: center;
}
#neural-vista-text {
    color: purple !important;  /* Purple color for the title */
    font-size: 14px;           /* Adjust font size as needed */
    font-weight: bold;
    text-align: center;
}

"""

# Then in the Gradio interface:

with gr.Blocks(css=custom_css) as interface:
   
    gr.HTML("""
    <span style="color: #E6E6FA; font-weight: bold;" id="neural-vista-title">NeuralVista</span><br>
    
    A powerful tool designed to help you <span style="color: #E6E6FA; font-weight: bold;" id="neural-vista-text">visualize</span> models in action.
""")
    
    # Default sample
    default_sample = "Sample 1"

    with gr.Row():
        # Left side: Sample selection and image upload
        with gr.Column():
            sample_selection = gr.Radio(
                choices=list(sample_images.keys()),
                label="Select a Sample Image",
                value=default_sample,
            )

            upload_image = gr.Image(
                label="Upload an Image",
                type="pil",  
            )

            selected_models = gr.CheckboxGroup(
                choices=["yolov5", "yolov8s"],
                value=["yolov5"],
                label="Select Model(s)",
            )
            #with gr.Row(elem_classes="custom-row"):
            run_button = gr.Button("Run", elem_classes="custom-button")


        with gr.Column():
            sample_display = gr.Image(
                value=load_sample_image(default_sample),  
                label="Selected Sample Image",
            )

    # Results and visualization
    with gr.Row(elem_classes="custom-row"):
        result_gallery = gr.Gallery(
            label="Results",
            rows=1, 
            height="auto",       # Adjust height automatically based on content
            columns=1 ,
            object_fit="contain"
        ) 
        netron_display = gr.HTML(label="Netron Visualization")

    # Update sample image
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )
    
    gr.HTML("""
    <span style="color: purple; font-weight: bold;">Concept Discovery</span> involves identifying interpretable high-level features or concepts within a deep learning model's representation. It aims to understand what a model has learned and how these learned features relate to meaningful attributes in the data.<br><br>

    <span style="color: purple; font-weight: bold;">Deep Feature Factorization (DFF)</span> is a technique that decomposes the deep features learned by a model into disentangled and interpretable components. It typically involves matrix factorization methods applied to activation maps, enabling the identification of semantically meaningful concepts captured by the model.

    Together, these methods enhance model interpretability and provide insights into the decision-making process of neural networks.
""")
    with gr.Row(elem_classes="custom-row"):
        dff_gallery = gr.Gallery(
            label="Deep Feature Factorization",
            rows=2,          # 8 rows
            columns=4,       # 1 image per row
            object_fit="fit",
            height="auto"    # Adjust as needed
        ) 

    # Multi-threaded processing
    def run_both(sample_choice, uploaded_image, selected_models):
        results = []
        netron_html = ""

        # Thread to process the image
        def process_thread():
            nonlocal results
            target_lyr = -5 
            n_components = 8
            results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8)

        # Thread to generate Netron visualization
        def netron_thread():
            nonlocal netron_html
            gr.HTML("""
            Generated abstract visualizations of model""")
            netron_html = view_model(selected_models)

        # Launch threads
        t1 = threading.Thread(target=process_thread)
        t2 = threading.Thread(target=netron_thread)
        t1.start()
        t2.start()
        t1.join()
        t2.join()
        image1, text, image2 = results[0]
        if isinstance(image2, list):
            # Check if image2 contains exactly 8 images
            if len(image2) == 8:
                print("image2 contains 8 images.")
            else:
                print("Warning: image2 does not contain exactly 8 images.")
        else:
            print("Error: image2 is not a list of images.")
        return [(image1, text)], netron_html, image2

    # Run button click
    run_button.click(
        fn=run_both,
        inputs=[sample_selection, upload_image, selected_models],
        outputs=[result_gallery, netron_display, dff_gallery],
    )

# Launch Gradio interface
if __name__ == "__main__":
    interface.launch(share=True)