Spaces:
Sleeping
Sleeping
File size: 9,176 Bytes
4d51c47 449b9ac dbd2a18 4d51c47 aed0d09 9f0de77 4d51c47 6492b12 aed0d09 24f4b49 4d51c47 c3d8605 dbd2a18 aca98af 6492b12 90ff42e aca98af 4d51c47 6492b12 4d51c47 fa09b4a 8978982 fa09b4a 8978982 dbd2a18 4d51c47 d00769c d3127bb 4d51c47 8978982 4d51c47 449b9ac f504910 4d51c47 dbd2a18 7b76c30 47e1548 044ddc3 a2ea702 47e1548 7b76c30 9f0de77 5721e34 9f0de77 b5d5d16 9f0de77 4f309dc 65a7a99 f323ab3 65a7a99 9f0de77 a3ee2cf 65a7a99 188ba59 9f0de77 111100d 65a7a99 b5d5d16 6037793 b5d5d16 8d948ee a91d21f c77071f 8d948ee b5d5d16 634cc88 a3ee2cf 4d51c47 dbd2a18 9203d76 6037793 6faf002 8d948ee 51edb67 9203d76 4d51c47 dbd2a18 4d51c47 408a665 4d51c47 b30ea65 dbd2a18 ad84640 4d51c47 ad84640 dbd2a18 4d51c47 dbd2a18 c602862 dbd2a18 4d51c47 dbd2a18 fc9d60f 7f898ee 8978982 634cc88 4d51c47 dbd2a18 4d51c47 1cd1f16 b0e3a7f 1ba886a a91d21f 5f0441b a91d21f 5f0441b 1ba886a 2fa8b0f 4d51c47 cb40f87 4d51c47 dbd2a18 4d51c47 2872d33 4d51c47 6fb2f90 449b9ac 4d51c47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8):
"""Process the image using selected YOLO models."""
# Load sample or uploaded image
if uploaded_image is not None:
image = uploaded_image
else:
image = load_sample_image(sample_choice)
# Preprocess image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
# Apply selected models
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
return result_images
def view_model(selected_models):
"""Generate Netron visualization for the selected models."""
netron_html = ""
for model in selected_models:
if model == "yolov5":
netron_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"
# CSS to style the Gradio components and HTML content
custom_css = """
body {
background-image:
linear-gradient(to right, transparent 39px, #a05252 1px, transparent 40px), /* Vertical dashed lines */
background-size: 1800px 1800px; /* Grid cell size */
height: 100%; /* Ensure body height is 100% of the viewport */
margin: 0; /* Remove default margin */
overflow-y: auto; /* Allow vertical scrolling if needed */
}
.custom-row {
display: flex;
justify-content: center;
padding: 20px;
}
.custom-button {
background-color: #6a1b9a;
color: white;
font-size: 14px; /* Reduced font size */
width: 120px; /* Reduced width */
border-radius: 8px;
cursor: pointer;
}
/* Custom border styles for all Gradio components */
.gradio-container, .gradio-row, .gradio-column, .gradio-input, .gradio-image, .gradio-checkgroup, .gradio-button, .gradio-markdown {
border: 3px #800000 !important; /* Border width and color */
border-radius: 8px !important; /* Rounded corners */
}
/* Additional customizations for images to enhance visibility of the border */
.gradio-image img {
border-radius: 8px !important;
border: 3px solid black !important; /* Border for image */
}
/* Custom Row for images and buttons */
.custom-row img {
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}
#highlighted-text {
font-weight: bold;
color: #1976d2;
}
.gradio-block {
max-height: 100vh; /* Allow scrolling within the Gradio blocks */
overflow-y: auto; /* Enable scrolling for the content if it overflows */
}
#neural-vista-title {
color: #800000 !important; /* Purple color for the title */
font-size: 32px; /* Adjust font size as needed */
font-weight: bold;
text-align: center;
}
#neural-vista-text {
color: #800000 !important; /* Purple color for the title */
font-size: 18px; /* Adjust font size as needed */
font-weight: bold;
text-align: center;
}
"""
# Then in the Gradio interface:
with gr.Blocks(css=custom_css) as interface:
gr.HTML("""
<span style="color: #800000; font-family: 'Papyrus', cursive; font-weight: bold; font-size: 32px;">NeuralVista</span><br><br>
<span style="color: black; font-family: 'Papyrus', cursive; font-size: 18px;">A harmonious framework of tools ☼ designed to illuminate the inner workings of AI.</span>
""")
# Default sample
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and image upload
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
#with gr.Row(elem_classes="custom-row"):
run_button = gr.Button("Run", elem_classes="custom-button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
gr.HTML("""<span style="font-family: 'Papyrus', cursive; font-size: 14px;">The visualization demonstrates object detection and interpretability. Detected objects are highlighted with bounding boxes, while the heatmap reveals regions of focus, offering insights into the model's decision-making process.</span>""")
# Results and visualization
with gr.Row(elem_classes="custom-row"):
result_gallery = gr.Gallery(
label="Results",
rows=1,
height="auto", # Adjust height automatically based on content
columns=1 ,
object_fit="contain"
)
netron_display = gr.HTML(label="Netron Visualization")
# Update sample image
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
gr.HTML("""
<span style="font-family: 'Papyrus', cursive; font-size: 14px;">
<span style="color: #800000 ;">Concept Discovery</span> is the process of uncovering the hidden, high-level features that a deep learning model has learned. It provides a way to understand the essence of its internal representations, akin to peering into the mind of the model and revealing the meaningful patterns it detects in the data.
<br><br>
<span style="color: #800000 ;">Deep Feature Factorization</span> (DFF) serves as a tool for breaking down these complex features into simpler, more interpretable components. By applying matrix factorization on activation maps, it untangles the intricate web of learned representations, making it easier to comprehend what the model is truly focusing on. Together, these methods bring us closer to understanding the underlying logic of neural networks, shedding light on the often enigmatic decisions they make.
</span>
""")
with gr.Row(elem_classes="custom-row"):
dff_gallery = gr.Gallery(
label="Deep Feature Factorization",
rows=2, # 8 rows
columns=4, # 1 image per row
object_fit="fit",
height="auto" # Adjust as needed
)
# Multi-threaded processing
def run_both(sample_choice, uploaded_image, selected_models):
results = []
netron_html = ""
# Thread to process the image
def process_thread():
nonlocal results
target_lyr = -5
n_components = 8
results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8)
# Thread to generate Netron visualization
def netron_thread():
nonlocal netron_html
gr.HTML("""
Generated abstract visualizations of model""")
netron_html = view_model(selected_models)
# Launch threads
t1 = threading.Thread(target=process_thread)
t2 = threading.Thread(target=netron_thread)
t1.start()
t2.start()
t1.join()
t2.join()
image1, text, image2 = results[0]
if isinstance(image2, list):
# Check if image2 contains exactly 8 images
if len(image2) == 8:
print("image2 contains 8 images.")
else:
print("Warning: image2 does not contain exactly 8 images.")
else:
print("Error: image2 is not a list of images.")
return [(image1, text)], netron_html, image2
# Run button click
run_button.click(
fn=run_both,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery, netron_display, dff_gallery],
)
# Launch Gradio interface
if __name__ == "__main__":
interface.launch(share=True)
|