Spaces:
Sleeping
Sleeping
File size: 4,799 Bytes
6492b12 dbd2a18 9b2c5e1 aed0d09 dbd2a18 d00769c 6492b12 aed0d09 24f4b49 f7b8e0e dbd2a18 c3d8605 dbd2a18 aca98af 6492b12 90ff42e aca98af dbd2a18 6492b12 fa09b4a 6492b12 fa09b4a 6492b12 dbd2a18 d00769c d3127bb dbd2a18 d3127bb 6492b12 d00769c d3127bb 6492b12 dbd2a18 d3127bb f504910 7ea4790 ca043a5 7ea4790 6492b12 ad84640 6492b12 dbd2a18 6492b12 dbd2a18 91ebe8d dbd2a18 0c96397 6492b12 7838123 dbd2a18 6492b12 408a665 dbd2a18 b30ea65 dbd2a18 ad84640 dbd2a18 d00769c dbd2a18 6492b12 dbd2a18 6492b12 dbd2a18 20ca536 dbd2a18 6492b12 ca043a5 408a665 7991981 91ebe8d dbd2a18 91ebe8d dbd2a18 ca043a5 408a665 1a11002 ca043a5 dbd2a18 91ebe8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions):
"""Process the image using selected YOLO models."""
if uploaded_image is not None:
image = uploaded_image # Use the uploaded image
else:
image = load_sample_image(sample_choice) # Use selected sample image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
return result_images
def view_model(selected_models):
"""Generate Netron visualization for the selected models."""
for model in selected_models:
if model == "yolov5":
iframe_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
return iframe_html
return "<p>Please select a valid model for Netron visualization.</p>"
# Custom CSS for styling (optional)
custom_css = """
#run_button {
background-color: purple;
color: white;
width: 120px;
border-radius: 5px;
font-size: 14px;
}
"""
def run_both(sample_choice, uploaded_image, yolo_versions):
"""Run both image processing and model visualization simultaneously."""
results = []
def process_thread():
result_images = process_image(sample_choice, uploaded_image, yolo_versions)
results.append(result_images)
def model_thread():
model_html = view_model(yolo_versions)
results.append(model_html)
# Create threads to run both functions simultaneously
process_thread_obj = threading.Thread(target=process_thread)
model_thread_obj = threading.Thread(target=model_thread)
process_thread_obj.start()
model_thread_obj.start()
# Wait for both threads to finish
process_thread_obj.join()
model_thread_obj.join()
return results[0], results[1] # Return processed image results and model visualization
with gr.Blocks(css=custom_css) as interface:
gr.Markdown("# NeuralVista: Visualize Object Detection of Your Models")
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and upload image
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
type="value",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
run_button = gr.Button("Run", elem_id="run_button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
# Below the sample image, display results and architecture side by side
with gr.Row():
result_gallery = gr.Gallery(
label="Results",
elem_id="gallery",
rows=1,
height=500,
)
netron_display = gr.HTML(label="Netron Visualization")
# Update the sample image when the sample is changed
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
# Run both functions concurrently on button click
run_button.click(
fn=run_both,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery, netron_display],
)
# Launching Gradio app
if __name__ == "__main__":
interface.launch(share=True) |