Spaces:
Sleeping
Sleeping
File size: 7,179 Bytes
d5e1bd6 0318d64 e1e2e01 d5e1bd6 e1e2e01 d5e1bd6 f6aa311 d5e1bd6 f6aa311 d5e1bd6 d8f9e92 d5e1bd6 d8f9e92 d5e1bd6 d8f9e92 d5e1bd6 e1e2e01 d5e1bd6 f6aa311 d5e1bd6 175164a e1e2e01 175164a 0318d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
"""
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(results):
detections = results.pandas().xyxy[0].to_dict()
boxes, colors, names, classes = [], [], [], []
for i in range(len(detections["xmin"])):
confidence = detections["confidence"][i]
if confidence < 0.2:
continue
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
name, category = detections["name"][i], int(detections["class"][i])
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category])
names.append(name)
classes.append(category)
return boxes, colors, names, classes
def draw_detections(boxes, colors, names, classes, img):
for box, color, name, cls in zip(boxes, colors, names, classes):
xmin, ymin, xmax, ymax = box
label = f"{cls}: {name}" # Combine class ID and name
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(
img, label, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA
)
return img
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
img_float = np.float32(rgb_img) / 255
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
return cam_image, renormalized_cam_image
def xai_yolov5(image):
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.eval()
model.cpu()
target_layers = [model.model.model.model[-2]] # Grad-CAM target layer
# Run YOLO detection
results = model([image])
boxes, colors, names, classes = parse_detections(results)
detections_img = draw_detections(boxes, colors, names,classes, image.copy())
# Prepare input tensor for Grad-CAM
img_float = np.float32(image) / 255
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
# Grad-CAM visualization
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
# Combine results
final_image = np.hstack((image, detections_img, renormalized_cam_image))
caption = "Results using YOLOv5"
return Image.fromarray(final_image), caption
"""
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
from sklearn.decomposition import NMF # For feature factorization
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(results):
detections = results.pandas().xyxy[0].to_dict()
boxes, colors, names, classes = [], [], [], []
for i in range(len(detections["xmin"])):
confidence = detections["confidence"][i]
if confidence < 0.2:
continue
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
name, category = detections["name"][i], int(detections["class"][i])
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category])
names.append(name)
classes.append(category)
return boxes, colors, names, classes
def draw_detections(boxes, colors, names, classes, img):
for box, color, name, cls in zip(boxes, colors, names, classes):
xmin, ymin, xmax, ymax = box
label = f"{cls}: {name}" # Combine class ID and name
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(
img, label, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA
)
return img
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
img_float = np.float32(rgb_img) / 255
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
return cam_image, renormalized_cam_image
def deep_feature_factorization(features):
# Reshape the features for factorization (Flatten spatial dimensions)
n, c, h, w = features.shape
reshaped_features = features.view(c, -1).detach().cpu().numpy()
# Apply Non-Negative Matrix Factorization (NMF)
nmf = NMF(n_components=10, init='random', random_state=42, max_iter=300)
basis = nmf.fit_transform(reshaped_features)
coefficients = nmf.components_
# Reconstruct the feature map
reconstructed = np.dot(basis, coefficients).reshape((c, h, w))
return torch.tensor(reconstructed, dtype=torch.float32).unsqueeze(0)
def xai_yolov5(image):
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.eval()
model.cpu()
target_layers = [model.model.model.model[-2]]
# Run YOLO detection
results = model([image])
boxes, colors, names, classes = parse_detections(results)
detections_img = draw_detections(boxes, colors, names, classes, image.copy())
# Extract intermediate features
def hook(module, input, output):
return output
hook_handle = target_layers[0].register_forward_hook(hook)
with torch.no_grad():
model([image])
intermediate_features = hook_handle.remove()
# Apply Deep Feature Factorization
factored_features = deep_feature_factorization(intermediate_features)
# Prepare input tensor for Grad-CAM
img_float = np.float32(image) / 255
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
# Grad-CAM visualization using factored features
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, factored_features, image, boxes)
# Combine results
final_image = np.hstack((image, detections_img, renormalized_cam_image))
caption = "Results using YOLOv5 with Deep Feature Factorization"
return Image.fromarray(final_image), caption
|