BhumikaMak commited on
Commit
f6aa311
·
1 Parent(s): e1e2e01

Update: class lables

Browse files
Files changed (2) hide show
  1. yolov5.py +5 -4
  2. yolov8.py +5 -4
yolov5.py CHANGED
@@ -13,7 +13,7 @@ COLORS = np.random.uniform(0, 255, size=(80, 3))
13
 
14
  def parse_detections(results):
15
  detections = results.pandas().xyxy[0].to_dict()
16
- boxes, colors, names = [], [], []
17
  for i in range(len(detections["xmin"])):
18
  confidence = detections["confidence"][i]
19
  if confidence < 0.2:
@@ -24,7 +24,8 @@ def parse_detections(results):
24
  boxes.append((xmin, ymin, xmax, ymax))
25
  colors.append(COLORS[category])
26
  names.append(name)
27
- return boxes, colors, names
 
28
 
29
 
30
  def draw_detections(boxes, colors, names, classes, img):
@@ -68,8 +69,8 @@ def xai_yolov5(image):
68
 
69
  # Run YOLO detection
70
  results = model([image])
71
- boxes, colors, names = parse_detections(results)
72
- detections_img = draw_detections(boxes, colors, names, image.copy())
73
 
74
  # Prepare input tensor for Grad-CAM
75
  img_float = np.float32(image) / 255
 
13
 
14
  def parse_detections(results):
15
  detections = results.pandas().xyxy[0].to_dict()
16
+ boxes, colors, names, classes = [], [], [], []
17
  for i in range(len(detections["xmin"])):
18
  confidence = detections["confidence"][i]
19
  if confidence < 0.2:
 
24
  boxes.append((xmin, ymin, xmax, ymax))
25
  colors.append(COLORS[category])
26
  names.append(name)
27
+ classes.append(category)
28
+ return boxes, colors, names, classes
29
 
30
 
31
  def draw_detections(boxes, colors, names, classes, img):
 
69
 
70
  # Run YOLO detection
71
  results = model([image])
72
+ boxes, colors, names, classes = parse_detections(results)
73
+ detections_img = draw_detections(boxes, colors, names,classes, image.copy())
74
 
75
  # Prepare input tensor for Grad-CAM
76
  img_float = np.float32(image) / 255
yolov8.py CHANGED
@@ -11,7 +11,7 @@ from ultralytics import YOLO
11
 
12
  COLORS = np.random.uniform(0, 255, size=(80, 3))
13
  def parse_detections(detections, model):
14
- boxes, colors, names = [], [], []
15
  for detection in detections.boxes:
16
  xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist())
17
  confidence = detection.conf.item()
@@ -22,7 +22,8 @@ def parse_detections(detections, model):
22
  boxes.append((xmin, ymin, xmax, ymax))
23
  colors.append(COLORS[class_id])
24
  names.append(name)
25
- return boxes, colors, names
 
26
 
27
  def draw_detections(boxes, colors, names, classes, img):
28
  for box, color, name, cls in zip(boxes, colors, names, classes):
@@ -55,8 +56,8 @@ def xai_yolov8s(image):
55
  model.eval()
56
  results = model(image)
57
  detections = results[0]
58
- boxes, colors, names = parse_detections(detections, model)
59
- detections_img = draw_detections(boxes, colors, names, image.copy())
60
  img_float = np.float32(image) / 255
61
  transform = transforms.ToTensor()
62
  tensor = transform(img_float).unsqueeze(0)
 
11
 
12
  COLORS = np.random.uniform(0, 255, size=(80, 3))
13
  def parse_detections(detections, model):
14
+ boxes, colors, names, classes = [], [], [], []
15
  for detection in detections.boxes:
16
  xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist())
17
  confidence = detection.conf.item()
 
22
  boxes.append((xmin, ymin, xmax, ymax))
23
  colors.append(COLORS[class_id])
24
  names.append(name)
25
+ classes.append(class_id)
26
+ return boxes, colors, names, classes
27
 
28
  def draw_detections(boxes, colors, names, classes, img):
29
  for box, color, name, cls in zip(boxes, colors, names, classes):
 
56
  model.eval()
57
  results = model(image)
58
  detections = results[0]
59
+ boxes, colors, names, classes = parse_detections(detections, model)
60
+ detections_img = draw_detections(boxes, colors, names, classes, image.copy())
61
  img_float = np.float32(image) / 255
62
  transform = transforms.ToTensor()
63
  tensor = transform(img_float).unsqueeze(0)