Bhaskar2611's picture
Update app.py
fd970b6 verified
raw
history blame
8.82 kB
import os
import re
import json
import gradio as gr
import pandas as pd
import pdfplumber
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import InferenceClient
# Initialize with a reliable free model that supports text-generation
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)
def extract_excel_data(file_path):
"""Extract text from Excel file"""
df = pd.read_excel(file_path, engine='openpyxl')
return df.to_string(index=False)
def extract_text_from_pdf(pdf_path, is_scanned=False):
"""Extract text from PDF with fallback OCR"""
try:
# Try native PDF extraction first
with pdfplumber.open(pdf_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
print(f"Native PDF extraction failed: {str(e)}")
# Fallback to OCR for scanned PDFs
images = convert_from_path(pdf_path, dpi=200)
text = ""
for image in images:
text += pytesseract.image_to_string(image) + "\n"
return text
def parse_bank_statement(text):
"""Parse bank statement using LLM with fallback to rule-based parser"""
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
print(f"Original text sample: {cleaned_text[:200]}...")
# Craft precise prompt with strict JSON formatting instructions
prompt = f"""
<|system|>
You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
</s>
<|user|>
Extract all transactions from this bank statement with these exact fields:
- date (format: YYYY-MM-DD)
- description
- amount (format: 0.00)
- debit (format: 0.00)
- credit (format: 0.00)
- closing_balance (format: 0.00 or -0.00 for negative)
- category
Statement text:
{cleaned_text[:3000]} [truncated if too long]
Return JSON with this exact structure:
{{
"transactions": [
{{
"date": "2025-05-08",
"description": "Company XYZ Payroll",
"amount": "8315.40",
"debit": "0.00",
"credit": "8315.40",
"closing_balance": "38315.40",
"category": "Salary"
}},
{{
"date": "2025-05-19",
"description": "Whole Foods",
"amount": "142.21",
"debit": "142.21",
"credit": "0.00",
"closing_balance": "38173.19",
"category": "Groceries"
}}
]
}}
RULES:
1. Output ONLY the JSON object with no additional text
2. Keep amounts as strings with 2 decimal places
3. For missing values, use empty strings
4. Convert negative amounts to format "-123.45"
5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
</s>
<|assistant|>
"""
try:
# Call LLM via Hugging Face Inference API
response = client.text_generation(
prompt,
max_new_tokens=2000,
temperature=0.01,
stop_sequences=["</s>"]
)
print(f"LLM Response: {response}")
# Validate and clean JSON response
response = response.strip()
if not response.startswith('{'):
# Find the first { and last } to extract JSON
start_idx = response.find('{')
end_idx = response.rfind('}')
if start_idx != -1 and end_idx != -1:
response = response[start_idx:end_idx+1]
# Parse JSON and validate structure
data = json.loads(response)
if "transactions" not in data:
raise ValueError("Missing 'transactions' key in JSON")
return data
except Exception as e:
print(f"LLM Error: {str(e)}")
# Fallback to rule-based parser
return rule_based_parser(cleaned_text)
def rule_based_parser(text):
"""Enhanced fallback parser for structured tables"""
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Find header line - more flexible detection
header_index = None
header_patterns = [
r'Date\b', r'Description\b', r'Amount\b',
r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
]
for i, line in enumerate(lines):
if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
header_index = i
break
if header_index is None:
# Try pipe-delimited format as fallback
for i, line in enumerate(lines):
if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
header_index = i
break
if header_index is None or header_index + 1 >= len(lines):
return {"transactions": []}
data_lines = lines[header_index + 1:]
transactions = []
for line in data_lines:
# Handle both pipe-delimited and space-aligned formats
if '|' in line:
parts = [p.strip() for p in line.split('|') if p.strip()]
else:
# Space-aligned format - split by 2+ spaces
parts = re.split(r'\s{2,}', line)
if len(parts) < 7:
continue
try:
transactions.append({
"date": parts[0],
"description": parts[1],
"amount": format_number(parts[2]),
"debit": format_number(parts[3]),
"credit": format_number(parts[4]),
"closing_balance": format_number(parts[5]),
"category": parts[6]
})
except Exception as e:
print(f"Error parsing line: {str(e)}")
return {"transactions": transactions}
def format_number(value):
"""Format numeric values consistently"""
if not value:
return "0.00"
# Clean numeric values
value = value.replace(',', '').replace('$', '').strip()
# Handle negative numbers in parentheses
if '(' in value and ')' in value:
value = '-' + value.replace('(', '').replace(')', '')
# Standardize decimal format
if '.' not in value:
value += '.00'
# Ensure two decimal places
parts = value.split('.')
if len(parts) == 2:
integer = parts[0].lstrip('0') or '0'
decimal = parts[1][:2].ljust(2, '0')
value = f"{integer}.{decimal}"
# Handle negative signs
if value.startswith('-'):
return f"-{value[1:].lstrip('0')}" if value[1:] != '0.00' else '0.00'
return value
def process_file(file, is_scanned):
"""Main processing function"""
if not file:
return pd.DataFrame(columns=[
"Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"
])
file_path = file.name
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.xlsx':
text = extract_excel_data(file_path)
elif file_ext == '.pdf':
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
else:
return pd.DataFrame(columns=[
"Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"
])
parsed_data = parse_bank_statement(text)
df = pd.DataFrame(parsed_data["transactions"])
# Ensure all required columns exist
required_cols = ["date", "description", "amount", "debit",
"credit", "closing_balance", "category"]
for col in required_cols:
if col not in df.columns:
df[col] = ""
# Format columns properly
df.columns = ["Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"]
return df
except Exception as e:
print(f"Processing error: {str(e)}")
# Return empty DataFrame with correct columns on error
return pd.DataFrame(columns=[
"Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"
])
# Gradio Interface
interface = gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload Bank Statement (PDF/Excel)"),
gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
],
outputs=gr.Dataframe(
label="Parsed Transactions",
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
datatype=["date", "str", "number", "number", "number", "number", "str"]
),
title="AI Bank Statement Parser",
description="Extract structured transaction data from PDF/Excel bank statements",
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch()