Bhaskar2611's picture
Update app.py
27a375e verified
raw
history blame
5 kB
import os
import re
import json
import gradio as gr
import pandas as pd
import pdfplumber
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import InferenceClient
# Initialize Hugging Face Inference Client
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=hf_token)
def extract_excel_data(file_path):
"""Extract text from Excel file"""
df = pd.read_excel(file_path, engine='openpyxl')
return df.to_string(index=False)
def extract_text_from_pdf(pdf_path, is_scanned=False):
"""Extract text from PDF with fallback OCR"""
try:
# Try native PDF extraction first
with pdfplumber.open(pdf_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
print(f"Native PDF extraction failed: {str(e)}")
# Fallback to OCR for scanned PDFs
images = convert_from_path(pdf_path, dpi=200)
text = ""
for image in images:
text += pytesseract.image_to_string(image) + "\n"
return text
def parse_bank_statement(text):
"""Parse bank statement using LLM with fallback to rule-based parser"""
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
# Craft precise prompt for LLM
prompt = f"""
You are a financial data parser. Extract transactions from bank statements.
Given this bank statement text:
Extract all transactions with these fields:
- Date
- Description
- Amount
- Debit
- Credit
- Closing Balance
- Category
Return JSON with "transactions" array containing these fields.
Example format:
{"transactions": [
{"date": "2025-05-08", "description": "Company XYZ Payroll", "amount": "8315.40", "debit": "0.00", "credit": "8315.40", "closing_balance": "38315.40", "category": "Salary"},
...
]}
Rules:
1. Ensure numeric fields have valid numbers (e.g., "0.00" instead of "-")
2. Convert negative balances to standard format (e.g., "-2421.72")
3. Map category names consistently (e.g., "Groceries", "Medical", "Utilities")
"""
try:
# Call LLM via Hugging Face Inference API
response = client.text_generation(prompt, max_new_tokens=1000, temperature=0.1)
return json.loads(response)
except Exception as e:
print(f"LLM Error: {str(e)}")
# Fallback to rule-based parser
return rule_based_parser(cleaned_text)
def rule_based_parser(text):
"""Fallback parser for structured tables with pipe delimiters"""
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Find header line containing 'Date'
header_index = None
for i, line in enumerate(lines):
if re.search(r'\bDate\b', line):
header_index = i
break
if header_index is None or header_index + 1 >= len(lines):
return {"transactions": []}
data_lines = lines[header_index + 1:]
transactions = []
for line in data_lines:
if not line.startswith('|'):
continue
parts = [p.strip() for p in line.split('|') if p.strip()]
if len(parts) < 7:
continue
try:
transactions.append({
"date": parts[0],
"description": parts[1],
"amount": parts[2],
"debit": parts[3],
"credit": parts[4],
"closing_balance": parts[5],
"category": parts[6]
})
except Exception as e:
print(f"Error parsing line: {str(e)}")
return {"transactions": transactions}
def process_file(file, is_scanned):
"""Main processing function"""
if not file:
return "No file uploaded"
file_path = file.name
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.xlsx':
text = extract_excel_data(file_path)
elif file_ext == '.pdf':
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
else:
return {"error": "Unsupported file format"}
parsed_data = parse_bank_statement(text)
df = pd.DataFrame(parsed_data["transactions"])
return df
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
interface = gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload Bank Statement (PDF/Excel)"),
gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
],
outputs=gr.Dataframe(
label="Parsed Transactions",
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"]
),
title="AI Bank Statement Parser",
description="Extract structured transaction data from PDF/Excel bank statements using LLM and hybrid parsing techniques.",
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch()