|
import os |
|
import re |
|
import json |
|
import gradio as gr |
|
import pandas as pd |
|
import pdfplumber |
|
import pytesseract |
|
from pdf2image import convert_from_path |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
hf_token = os.getenv("HF_TOKEN") |
|
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=hf_token) |
|
|
|
def extract_excel_data(file_path): |
|
"""Extract text from Excel file""" |
|
df = pd.read_excel(file_path, engine='openpyxl') |
|
return df.to_string(index=False) |
|
|
|
def extract_text_from_pdf(pdf_path, is_scanned=False): |
|
"""Extract text from PDF with fallback OCR""" |
|
try: |
|
|
|
with pdfplumber.open(pdf_path) as pdf: |
|
text = "" |
|
for page in pdf.pages: |
|
text += page.extract_text() + "\n" |
|
return text |
|
except Exception as e: |
|
print(f"Native PDF extraction failed: {str(e)}") |
|
|
|
images = convert_from_path(pdf_path, dpi=200) |
|
text = "" |
|
for image in images: |
|
text += pytesseract.image_to_string(image) + "\n" |
|
return text |
|
|
|
def parse_bank_statement(text): |
|
"""Parse bank statement using LLM with fallback to rule-based parser""" |
|
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text) |
|
|
|
|
|
prompt = f""" |
|
You are a financial data parser. Extract transactions from bank statements. |
|
|
|
Given this bank statement text: |
|
|
|
Extract all transactions with these fields: |
|
- Date |
|
- Description |
|
- Amount |
|
- Debit |
|
- Credit |
|
- Closing Balance |
|
- Category |
|
|
|
Return JSON with "transactions" array containing these fields. |
|
|
|
Example format: |
|
{"transactions": [ |
|
{"date": "2025-05-08", "description": "Company XYZ Payroll", "amount": "8315.40", "debit": "0.00", "credit": "8315.40", "closing_balance": "38315.40", "category": "Salary"}, |
|
... |
|
]} |
|
|
|
Rules: |
|
1. Ensure numeric fields have valid numbers (e.g., "0.00" instead of "-") |
|
2. Convert negative balances to standard format (e.g., "-2421.72") |
|
3. Map category names consistently (e.g., "Groceries", "Medical", "Utilities") |
|
""" |
|
|
|
try: |
|
|
|
response = client.text_generation(prompt, max_new_tokens=1000, temperature=0.1) |
|
return json.loads(response) |
|
except Exception as e: |
|
print(f"LLM Error: {str(e)}") |
|
|
|
return rule_based_parser(cleaned_text) |
|
|
|
def rule_based_parser(text): |
|
"""Fallback parser for structured tables with pipe delimiters""" |
|
lines = [line.strip() for line in text.split('\n') if line.strip()] |
|
|
|
|
|
header_index = None |
|
for i, line in enumerate(lines): |
|
if re.search(r'\bDate\b', line): |
|
header_index = i |
|
break |
|
|
|
if header_index is None or header_index + 1 >= len(lines): |
|
return {"transactions": []} |
|
|
|
data_lines = lines[header_index + 1:] |
|
transactions = [] |
|
|
|
for line in data_lines: |
|
if not line.startswith('|'): |
|
continue |
|
|
|
parts = [p.strip() for p in line.split('|') if p.strip()] |
|
if len(parts) < 7: |
|
continue |
|
|
|
try: |
|
transactions.append({ |
|
"date": parts[0], |
|
"description": parts[1], |
|
"amount": parts[2], |
|
"debit": parts[3], |
|
"credit": parts[4], |
|
"closing_balance": parts[5], |
|
"category": parts[6] |
|
}) |
|
except Exception as e: |
|
print(f"Error parsing line: {str(e)}") |
|
|
|
return {"transactions": transactions} |
|
|
|
def process_file(file, is_scanned): |
|
"""Main processing function""" |
|
if not file: |
|
return "No file uploaded" |
|
|
|
file_path = file.name |
|
file_ext = os.path.splitext(file_path)[1].lower() |
|
|
|
try: |
|
if file_ext == '.xlsx': |
|
text = extract_excel_data(file_path) |
|
elif file_ext == '.pdf': |
|
text = extract_text_from_pdf(file_path, is_scanned=is_scanned) |
|
else: |
|
return {"error": "Unsupported file format"} |
|
|
|
parsed_data = parse_bank_statement(text) |
|
df = pd.DataFrame(parsed_data["transactions"]) |
|
return df |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
interface = gr.Interface( |
|
fn=process_file, |
|
inputs=[ |
|
gr.File(label="Upload Bank Statement (PDF/Excel)"), |
|
gr.Checkbox(label="Is Scanned PDF? (Use OCR)") |
|
], |
|
outputs=gr.Dataframe( |
|
label="Parsed Transactions", |
|
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"] |
|
), |
|
title="AI Bank Statement Parser", |
|
description="Extract structured transaction data from PDF/Excel bank statements using LLM and hybrid parsing techniques.", |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |