Spaces:
Sleeping
Sleeping
File size: 5,944 Bytes
f330df4 27a375e f330df4 27a375e f330df4 ff610ff 27a375e f330df4 ff610ff 27a375e ff610ff 27a375e f330df4 27a375e ff610ff 27a375e f330df4 ff610ff f330df4 ff610ff 27a375e ff610ff f330df4 27a375e ff610ff 27a375e f330df4 27a375e 52ebfdc 27a375e 52ebfdc 27a375e 52ebfdc 27a375e ff610ff 27a375e ff610ff 4cfc47d 27a375e 4cfc47d 27a375e ff610ff 27a375e ff610ff 27a375e ff610ff 27a375e ff610ff f330df4 27a375e 4cfc47d 27a375e f330df4 ff610ff 27a375e 4cfc47d 27a375e 4cfc47d 27a375e 4cfc47d 27a375e 4cfc47d f330df4 27a375e f330df4 27a375e f330df4 27a375e ff610ff f330df4 ff610ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import re
import json
import gradio as gr
import pandas as pd
import pdfplumber
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import InferenceClient
# Initialize Hugging Face Inference Client
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=hf_token)
def extract_excel_data(file_path):
"""Extract text from Excel file"""
df = pd.read_excel(file_path, engine='openpyxl')
return df.to_string(index=False)
def extract_text_from_pdf(pdf_path, is_scanned=False):
"""Extract text from PDF with fallback OCR"""
try:
# Try native PDF extraction first
with pdfplumber.open(pdf_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
print(f"Native PDF extraction failed: {str(e)}")
# Fallback to OCR for scanned PDFs
images = convert_from_path(pdf_path, dpi=200)
text = ""
for image in images:
text += pytesseract.image_to_string(image) + "\n"
return text
def parse_bank_statement(text):
"""Parse bank statement using LLM with fallback to rule-based parser"""
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
# Craft precise prompt for LLM
prompt = f"""
You are a financial data parser. Extract transactions from bank statements.
Given this bank statement text:
Extract all transactions with these fields:
- Date
- Description
- Amount
- Debit
- Credit
- Closing Balance
- Category
Return JSON with "transactions" array containing these fields.
Example format:
{"transactions": [
{"date": "2025-05-08", "description": "Company XYZ Payroll", "amount": "8315.40", "debit": "0.00", "credit": "8315.40", "closing_balance": "38315.40", "category": "Salary"},
...
]}
Rules:
1. Ensure numeric fields have valid numbers (e.g., "0.00" instead of "-")
2. Convert negative balances to standard format (e.g., "-2421.72")
3. Map category names consistently (e.g., "Groceries", "Medical", "Utilities")
"""
try:
# Call LLM via Hugging Face Inference API
response = client.text_generation(prompt, max_new_tokens=1000, temperature=0.1)
return json.loads(response)
except Exception as e:
print(f"LLM Error: {str(e)}")
# Fallback to rule-based parser
return rule_based_parser(cleaned_text)
def rule_based_parser(text):
"""Fallback parser for structured tables with pipe delimiters"""
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Find header line containing '| Date'
header_index = None
for i, line in enumerate(lines):
if re.search(r'\|Date', line): # Improved pattern to match "|Date"
header_index = i
break
if header_index is None or header_index + 1 >= len(lines):
return {"transactions": []}
data_lines = lines[header_index + 1:]
transactions = []
for line in data_lines:
if not line.startswith('|'):
continue
parts = [p.strip() for p in line.split('|') if p.strip()]
if len(parts) < 7:
continue
try:
transactions.append({
"date": parts[0],
"description": parts[1],
"amount": parts[2],
"debit": parts[3],
"credit": parts[4],
"closing_balance": parts[5],
"category": parts[6]
})
except Exception as e:
print(f"Error parsing line: {str(e)}")
return {"transactions": transactions}
def process_file(file, is_scanned):
"""Main processing function"""
if not file:
return pd.DataFrame(columns=[
"Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"
])
file_path = file.name
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.xlsx':
text = extract_excel_data(file_path)
elif file_ext == '.pdf':
text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
else:
return pd.DataFrame(columns=[
"Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"
])
parsed_data = parse_bank_statement(text)
df = pd.DataFrame(parsed_data["transactions"])
# Ensure all required columns exist
required_cols = ["date", "description", "amount", "debit",
"credit", "closing_balance", "category"]
for col in required_cols:
if col not in df.columns:
df[col] = ""
df.columns = ["Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"]
return df
except Exception as e:
print(f"Processing error: {str(e)}")
# Return empty DataFrame with correct columns on error
return pd.DataFrame(columns=[
"Date", "Description", "Amount", "Debit",
"Credit", "Closing Balance", "Category"
])
# Gradio Interface
interface = gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload Bank Statement (PDF/Excel)"),
gr.Checkbox(label="Is Scanned PDF? (Use OCR)")
],
outputs=gr.Dataframe(
label="Parsed Transactions",
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"]
),
title="AI Bank Statement Parser",
description="Extract structured transaction data from PDF/Excel bank statements using LLM and hybrid parsing techniques.",
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch() |