File size: 12,880 Bytes
7b0dd2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# simulation_modules.py

import torch
import numpy as np
import cv2
import math
from collections import deque
from typing import List, Tuple, Dict, Any, Optional

# ================== Constants ==================
WAYPOINT_SCALE_FACTOR = 5.0
T1_FUTURE_TIME = 1.0
T2_FUTURE_TIME = 2.0
PIXELS_PER_METER = 8
MAX_DISTANCE = 32
IMG_SIZE = MAX_DISTANCE * PIXELS_PER_METER * 2
EGO_CAR_X = IMG_SIZE // 2
EGO_CAR_Y = IMG_SIZE - (4.0 * PIXELS_PER_METER)

COLORS = {
    'vehicle': [255, 0, 0],
    'pedestrian': [0, 255, 0],
    'cyclist': [0, 0, 255],
    'waypoint': [255, 255, 0],
    'ego_car': [255, 255, 255]
}

# ================== PID Controller ==================
class PIDController:
    def __init__(self, K_P=1.0, K_I=0.0, K_D=0.0, n=20):
        self._K_P = K_P
        self._K_I = K_I
        self._K_D = K_D
        self._window = deque([0 for _ in range(n)], maxlen=n)

    def step(self, error):
        self._window.append(error)
        if len(self._window) >= 2:
            integral = np.mean(self._window)
            derivative = self._window[-1] - self._window[-2]
        else:
            integral = derivative = 0.0
        return self._K_P * error + self._K_I * integral + self._K_D * derivative

# ================== Helper Functions ==================
def ensure_rgb(image):
    if len(image.shape) == 2:
        return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    elif image.shape[2] == 1:
        return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
    return image

def add_rect(img, loc, ori, box, value, color):
    center_x = int(loc[0] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
    center_y = int(loc[1] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
    size_px = (int(box[0] * PIXELS_PER_METER), int(box[1] * PIXELS_PER_METER))
    angle_deg = -np.degrees(math.atan2(ori[1], ori[0]))
    box_points = cv2.boxPoints(((center_x, center_y), size_px, angle_deg))
    box_points = np.int32(box_points)
    adjusted_color = [int(c * value) for c in color]
    cv2.fillConvexPoly(img, box_points, adjusted_color)
    return img

def render(traffic_grid, t=0):
    img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
    counts = {'vehicles': 0, 'pedestrians': 0, 'cyclists': 0}
    
    if isinstance(traffic_grid, torch.Tensor):
        traffic_grid = traffic_grid.cpu().numpy()
    
    h, w, c = traffic_grid.shape
    for y in range(h):
        for x in range(w):
            for ch in range(c):
                if traffic_grid[y, x, ch] > 0.1:
                    world_x = (x / w - 0.5) * MAX_DISTANCE * 2
                    world_y = (y / h - 0.5) * MAX_DISTANCE * 2
                    
                    if ch < 3:
                        color = COLORS['vehicle']
                        counts['vehicles'] += 1
                        box_size = [2.0, 4.0]
                    elif ch < 5:
                        color = COLORS['pedestrian']
                        counts['pedestrians'] += 1
                        box_size = [0.8, 0.8]
                    else:
                        color = COLORS['cyclist']
                        counts['cyclists'] += 1
                        box_size = [1.2, 2.0]
                    
                    img = add_rect(img, [world_x, world_y], [1.0, 0.0], 
                                 box_size, traffic_grid[y, x, ch], color)
    
    return img, counts

def render_waypoints(waypoints, scale_factor=WAYPOINT_SCALE_FACTOR):
    img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
    
    if isinstance(waypoints, torch.Tensor):
        waypoints = waypoints.cpu().numpy()
    
    scaled_waypoints = waypoints * scale_factor
    
    for i, wp in enumerate(scaled_waypoints):
        px = int(wp[0] * PIXELS_PER_METER + IMG_SIZE // 2)
        py = int(wp[1] * PIXELS_PER_METER + IMG_SIZE // 2)
        
        if 0 <= px < IMG_SIZE and 0 <= py < IMG_SIZE:
            radius = max(3, 8 - i)
            cv2.circle(img, (px, py), radius, COLORS['waypoint'], -1)
            
            if i > 0:
                prev_px = int(scaled_waypoints[i-1][0] * PIXELS_PER_METER + IMG_SIZE // 2)
                prev_py = int(scaled_waypoints[i-1][1] * PIXELS_PER_METER + IMG_SIZE // 2)
                if 0 <= prev_px < IMG_SIZE and 0 <= prev_py < IMG_SIZE:
                    cv2.line(img, (prev_px, prev_py), (px, py), COLORS['waypoint'], 2)
    
    return img

def render_self_car(img):
    car_pos = [0, -4.0]
    car_ori = [1.0, 0.0]
    car_size = [2.0, 4.5]
    return add_rect(img, car_pos, car_ori, car_size, 1.0, COLORS['ego_car'])

# ================== Tracker Classes ==================
class TrackedObject:
    def __init__(self, obj_id: int):
        self.id = obj_id
        self.last_step = 0
        self.last_pos = [0.0, 0.0]
        self.historical_pos = []
        self.historical_steps = []
        self.velocity = [0.0, 0.0]
        self.confidence = 1.0

    def update(self, step: int, obj_info: List[float]):
        self.last_step = step
        self.last_pos = obj_info[:2]
        self.historical_pos.append(obj_info[:2])
        self.historical_steps.append(step)
        
        if len(self.historical_pos) >= 2:
            dt = self.historical_steps[-1] - self.historical_steps[-2]
            if dt > 0:
                dx = self.historical_pos[-1][0] - self.historical_pos[-2][0]
                dy = self.historical_pos[-1][1] - self.historical_pos[-2][1]
                self.velocity = [dx/dt, dy/dt]

    def predict_position(self, future_time: float) -> List[float]:
        predicted_x = self.last_pos[0] + self.velocity[0] * future_time
        predicted_y = self.last_pos[1] + self.velocity[1] * future_time
        return [predicted_x, predicted_y]

    def is_alive(self, current_step: int, max_age: int = 5) -> bool:
        return (current_step - self.last_step) <= max_age

class Tracker:
    def __init__(self, frequency: int = 10):
        self.tracks: List[TrackedObject] = []
        self.frequency = frequency
        self.next_id = 0
        self.current_step = 0

    def update_and_predict(self, detections: List[Dict], step: int) -> np.ndarray:
        self.current_step = step
        
        for detection in detections:
            pos = detection.get('position', [0, 0])
            feature = detection.get('feature', 0.5)
            
            best_match = None
            min_distance = float('inf')
            
            for track in self.tracks:
                if track.is_alive(step):
                    distance = np.linalg.norm(np.array(pos) - np.array(track.last_pos))
                    if distance < min_distance and distance < 2.0:
                        min_distance = distance
                        best_match = track
            
            if best_match:
                best_match.update(step, pos + [feature])
            else:
                new_track = TrackedObject(self.next_id)
                new_track.update(step, pos + [feature])
                self.tracks.append(new_track)
                self.next_id += 1
        
        self.tracks = [t for t in self.tracks if t.is_alive(step)]
        return self._generate_prediction_grid()

    def _generate_prediction_grid(self) -> np.ndarray:
        grid = np.zeros((20, 20, 7), dtype=np.float32)
        
        for track in self.tracks:
            if track.is_alive(self.current_step):
                current_pos = track.last_pos
                future_pos_t1 = track.predict_position(T1_FUTURE_TIME)
                future_pos_t2 = track.predict_position(T2_FUTURE_TIME)
                
                for pos in [current_pos, future_pos_t1, future_pos_t2]:
                    grid_x = int((pos[0] / (MAX_DISTANCE * 2) + 0.5) * 20)
                    grid_y = int((pos[1] / (MAX_DISTANCE * 2) + 0.5) * 20)
                    
                    if 0 <= grid_x < 20 and 0 <= grid_y < 20:
                        channel = 0
                        grid[grid_y, grid_x, channel] = max(grid[grid_y, grid_x, channel], track.confidence)
        
        return grid

# ================== Controller Classes ==================
class ControllerConfig:
    def __init__(self):
        self.turn_KP = 1.0
        self.turn_KI = 0.1
        self.turn_KD = 0.1
        self.turn_n = 20
        
        self.speed_KP = 0.5
        self.speed_KI = 0.05
        self.speed_KD = 0.1
        self.speed_n = 20
        
        self.max_speed = 6.0
        self.max_throttle = 0.75
        self.clip_delta = 0.25
        
        self.brake_speed = 0.4
        self.brake_ratio = 1.1

class InterfuserController:
    def __init__(self, config: ControllerConfig):
        self.config = config
        self.turn_controller = PIDController(config.turn_KP, config.turn_KI, config.turn_KD, config.turn_n)
        self.speed_controller = PIDController(config.speed_KP, config.speed_KI, config.speed_KD, config.speed_n)
        self.last_steer = 0.0
        self.last_throttle = 0.0
        self.target_speed = 3.0

    def run_step(self, current_speed: float, waypoints: np.ndarray, 
                 junction: float, traffic_light_state: float, 
                 stop_sign: float, meta_data: Dict) -> Tuple[float, float, bool, str]:
        
        if isinstance(waypoints, torch.Tensor):
            waypoints = waypoints.cpu().numpy()
        
        if len(waypoints) > 1:
            dx = waypoints[1][0] - waypoints[0][0]
            dy = waypoints[1][1] - waypoints[0][1]
            target_yaw = math.atan2(dy, dx)
            steer = self.turn_controller.step(target_yaw)
        else:
            steer = 0.0
        
        steer = np.clip(steer, -1.0, 1.0)
        
        target_speed = self.target_speed
        if junction > 0.5:
            target_speed *= 0.7
        if abs(steer) > 0.3:
            target_speed *= 0.8
        
        speed_error = target_speed - current_speed
        throttle = self.speed_controller.step(speed_error)
        throttle = np.clip(throttle, 0.0, self.config.max_throttle)
        
        brake = False
        if traffic_light_state > 0.5 or stop_sign > 0.5 or current_speed > self.config.max_speed:
            brake = True
            throttle = 0.0
        
        self.last_steer = steer
        self.last_throttle = throttle
        
        metadata = f"Speed:{current_speed:.1f} Target:{target_speed:.1f} Junction:{junction:.2f}"
        
        return steer, throttle, brake, metadata

# ================== Display Interface ==================
class DisplayInterface:
    def __init__(self, width: int = 1200, height: int = 600):
        self._width = width
        self._height = height
        self.camera_width = width // 2
        self.camera_height = height
        self.map_width = width // 2
        self.map_height = height // 3
        
    def run_interface(self, data: Dict[str, Any]) -> np.ndarray:
        dashboard = np.zeros((self._height, self._width, 3), dtype=np.uint8)
        
        # Camera view
        camera_view = data.get('camera_view')
        if camera_view is not None:
            camera_resized = cv2.resize(camera_view, (self.camera_width, self.camera_height))
            dashboard[:, :self.camera_width] = camera_resized
        
        # Maps
        map_start_x = self.camera_width
        
        map_t0 = data.get('map_t0')
        if map_t0 is not None:
            map_resized = cv2.resize(map_t0, (self.map_width, self.map_height))
            dashboard[:self.map_height, map_start_x:] = map_resized
            cv2.putText(dashboard, "Current (t=0)", (map_start_x + 10, 30), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
        
        map_t1 = data.get('map_t1')
        if map_t1 is not None:
            map_resized = cv2.resize(map_t1, (self.map_width, self.map_height))
            y_start = self.map_height
            dashboard[y_start:y_start + self.map_height, map_start_x:] = map_resized
            cv2.putText(dashboard, f"Future (t={T1_FUTURE_TIME}s)", 
                       (map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.7, (255, 255, 255), 2)
        
        map_t2 = data.get('map_t2')
        if map_t2 is not None:
            map_resized = cv2.resize(map_t2, (self.map_width, self.map_height))
            y_start = self.map_height * 2
            dashboard[y_start:, map_start_x:] = map_resized
            cv2.putText(dashboard, f"Future (t={T2_FUTURE_TIME}s)", 
                       (map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.7, (255, 255, 255), 2)
        
        # Text info
        text_info = data.get('text_info', {})
        y_offset = 50
        for key, value in text_info.items():
            cv2.putText(dashboard, value, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.6, (0, 255, 0), 2)
            y_offset += 30
        
        return dashboard