Spaces:
Running
Running
Adam
commited on
Commit
·
7b0dd2f
1
Parent(s):
d80d18d
Deploy Baseer Self-Driving API v1.0
Browse files- Dockerfile +41 -0
- LICENSE +21 -0
- app.py +419 -0
- app_config.yaml +17 -0
- health_check.py +127 -0
- model/README.md +29 -0
- model_definition.py +1318 -0
- requirements.txt +22 -0
- simulation_modules.py +336 -0
Dockerfile
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# Baseer Self-Driving API - Hugging Face Space
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
# إنشاء مستخدم غير root (متطلب Hugging Face)
|
7 |
+
RUN useradd -m -u 1000 user
|
8 |
+
USER user
|
9 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
10 |
+
|
11 |
+
# تعيين مجلد العمل
|
12 |
+
WORKDIR /app
|
13 |
+
|
14 |
+
# تثبيت متطلبات النظام كـ root
|
15 |
+
USER root
|
16 |
+
RUN apt-get update && apt-get install -y \
|
17 |
+
libglib2.0-0 \
|
18 |
+
libsm6 \
|
19 |
+
libxext6 \
|
20 |
+
libxrender-dev \
|
21 |
+
libgomp1 \
|
22 |
+
libgtk-3-0 \
|
23 |
+
&& rm -rf /var/lib/apt/lists/*
|
24 |
+
|
25 |
+
# العودة لمستخدم user
|
26 |
+
USER user
|
27 |
+
|
28 |
+
# نسخ ملفات المتطلبات
|
29 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
30 |
+
|
31 |
+
# تثبيت المتطلبات
|
32 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
33 |
+
|
34 |
+
# نسخ كود التطبيق
|
35 |
+
COPY --chown=user . /app
|
36 |
+
|
37 |
+
# تعيين متغيرات البيئة
|
38 |
+
ENV PYTHONPATH=/app
|
39 |
+
|
40 |
+
# تشغيل التطبيق على المنفذ 7860 (متطلب Hugging Face)
|
41 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Baseer Team
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
app.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py - InterFuser Self-Driving API Server
|
2 |
+
|
3 |
+
import uuid
|
4 |
+
import base64
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from fastapi import FastAPI, HTTPException
|
9 |
+
from pydantic import BaseModel
|
10 |
+
from torchvision import transforms
|
11 |
+
from typing import List, Dict, Any, Optional
|
12 |
+
import logging
|
13 |
+
|
14 |
+
# استيراد من ملفاتنا المحلية
|
15 |
+
from model_definition import InterfuserModel, load_and_prepare_model, create_model_config
|
16 |
+
from simulation_modules import (
|
17 |
+
InterfuserController, ControllerConfig, Tracker, DisplayInterface,
|
18 |
+
render, render_waypoints, render_self_car, WAYPOINT_SCALE_FACTOR,
|
19 |
+
T1_FUTURE_TIME, T2_FUTURE_TIME
|
20 |
+
)
|
21 |
+
|
22 |
+
# إعداد التسجيل
|
23 |
+
logging.basicConfig(level=logging.INFO)
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
# ================== إعدادات عامة وتحميل النموذج ==================
|
27 |
+
app = FastAPI(
|
28 |
+
title="Baseer Self-Driving API",
|
29 |
+
description="API للقيادة الذاتية باستخدام نموذج InterFuser",
|
30 |
+
version="1.0.0"
|
31 |
+
)
|
32 |
+
|
33 |
+
device = torch.device("cpu")
|
34 |
+
logger.info(f"Using device: {device}")
|
35 |
+
|
36 |
+
# تحميل النموذج باستخدام الدالة المحسنة
|
37 |
+
try:
|
38 |
+
# إنشاء إعدادات النموذج باستخدام الإعدادات الصحيحة من التدريب
|
39 |
+
model_config = create_model_config(
|
40 |
+
model_path="model/best_model.pth"
|
41 |
+
# الإعدادات الصحيحة من التدريب ستطبق تلقائياً:
|
42 |
+
# embed_dim=256, rgb_backbone_name='r50', waypoints_pred_head='gru'
|
43 |
+
# with_lidar=False, with_right_left_sensors=False, with_center_sensor=False
|
44 |
+
)
|
45 |
+
|
46 |
+
# تحميل النموذج مع الأوزان
|
47 |
+
model = load_and_prepare_model(model_config, device)
|
48 |
+
logger.info("✅ تم تحميل النموذج بنجاح")
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
logger.error(f"❌ خطأ في تحميل النموذج: {e}")
|
52 |
+
logger.info("🔄 محاولة إنشاء نموذج بأوزان عشوائية...")
|
53 |
+
try:
|
54 |
+
model = InterfuserModel()
|
55 |
+
model.to(device)
|
56 |
+
model.eval()
|
57 |
+
logger.warning("⚠️ تم إنشاء النموذج بأوزان عشوائية")
|
58 |
+
except Exception as e2:
|
59 |
+
logger.error(f"❌ فشل في إنشاء النموذج: {e2}")
|
60 |
+
model = None
|
61 |
+
|
62 |
+
# تهيئة واجهة العرض
|
63 |
+
display = DisplayInterface()
|
64 |
+
|
65 |
+
# قاموس لتخزين جلسات المستخدمين
|
66 |
+
SESSIONS: Dict[str, Dict] = {}
|
67 |
+
|
68 |
+
# ================== هياكل بيانات Pydantic ==================
|
69 |
+
class Measurements(BaseModel):
|
70 |
+
pos: List[float] = [0.0, 0.0] # [x, y] position
|
71 |
+
theta: float = 0.0 # orientation angle
|
72 |
+
speed: float = 0.0 # current speed
|
73 |
+
steer: float = 0.0 # current steering
|
74 |
+
throttle: float = 0.0 # current throttle
|
75 |
+
brake: bool = False # brake status
|
76 |
+
command: int = 4 # driving command (4 = FollowLane)
|
77 |
+
target_point: List[float] = [0.0, 0.0] # target point [x, y]
|
78 |
+
|
79 |
+
class ModelOutputs(BaseModel):
|
80 |
+
traffic: List[List[List[float]]] # 20x20x7 grid
|
81 |
+
waypoints: List[List[float]] # Nx2 waypoints
|
82 |
+
is_junction: float
|
83 |
+
traffic_light_state: float
|
84 |
+
stop_sign: float
|
85 |
+
|
86 |
+
class ControlCommands(BaseModel):
|
87 |
+
steer: float
|
88 |
+
throttle: float
|
89 |
+
brake: bool
|
90 |
+
|
91 |
+
class RunStepInput(BaseModel):
|
92 |
+
session_id: str
|
93 |
+
image_b64: str
|
94 |
+
measurements: Measurements
|
95 |
+
|
96 |
+
class RunStepOutput(BaseModel):
|
97 |
+
model_outputs: ModelOutputs
|
98 |
+
control_commands: ControlCommands
|
99 |
+
dashboard_image_b64: str
|
100 |
+
|
101 |
+
class SessionResponse(BaseModel):
|
102 |
+
session_id: str
|
103 |
+
message: str
|
104 |
+
|
105 |
+
# ================== دوال المساعدة ==================
|
106 |
+
def get_image_transform():
|
107 |
+
"""إنشاء تحويلات الصورة كما في PDMDataset"""
|
108 |
+
return transforms.Compose([
|
109 |
+
transforms.ToTensor(),
|
110 |
+
transforms.Resize((224, 224), antialias=True),
|
111 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
112 |
+
])
|
113 |
+
|
114 |
+
# إنشاء كائن التحويل مرة واحدة
|
115 |
+
image_transform = get_image_transform()
|
116 |
+
|
117 |
+
def preprocess_input(frame_rgb: np.ndarray, measurements: Measurements, device: torch.device) -> Dict[str, torch.Tensor]:
|
118 |
+
"""
|
119 |
+
تحاكي ما يفعله PDMDataset.__getitem__ لإنشاء دفعة (batch) واحدة.
|
120 |
+
"""
|
121 |
+
# 1. معالجة الصورة الرئيسية
|
122 |
+
from PIL import Image
|
123 |
+
if isinstance(frame_rgb, np.ndarray):
|
124 |
+
frame_rgb = Image.fromarray(frame_rgb)
|
125 |
+
|
126 |
+
image_tensor = image_transform(frame_rgb).unsqueeze(0).to(device) # إضافة بُعد الدفعة
|
127 |
+
|
128 |
+
# 2. إنشاء مدخلات الكاميرات الأخرى عن طريق الاستنساخ
|
129 |
+
batch = {
|
130 |
+
'rgb': image_tensor,
|
131 |
+
'rgb_left': image_tensor.clone(),
|
132 |
+
'rgb_right': image_tensor.clone(),
|
133 |
+
'rgb_center': image_tensor.clone(),
|
134 |
+
}
|
135 |
+
|
136 |
+
# 3. إنشاء مدخل ليدار وهمي (أصفار)
|
137 |
+
batch['lidar'] = torch.zeros(1, 3, 224, 224, dtype=torch.float32).to(device)
|
138 |
+
|
139 |
+
# 4. تجميع القياسات بنفس ترتيب PDMDataset
|
140 |
+
m = measurements
|
141 |
+
measurements_tensor = torch.tensor([[
|
142 |
+
m.pos[0], m.pos[1], m.theta,
|
143 |
+
m.steer, m.throttle, float(m.brake),
|
144 |
+
m.speed, float(m.command)
|
145 |
+
]], dtype=torch.float32).to(device)
|
146 |
+
batch['measurements'] = measurements_tensor
|
147 |
+
|
148 |
+
# 5. إنشاء نقطة هدف
|
149 |
+
batch['target_point'] = torch.tensor([m.target_point], dtype=torch.float32).to(device)
|
150 |
+
|
151 |
+
# لا نحتاج إلى قيم ground truth (gt_*) أثناء التنبؤ
|
152 |
+
return batch
|
153 |
+
|
154 |
+
def decode_base64_image(image_b64: str) -> np.ndarray:
|
155 |
+
"""
|
156 |
+
فك تشفير صورة Base64
|
157 |
+
"""
|
158 |
+
try:
|
159 |
+
image_bytes = base64.b64decode(image_b64)
|
160 |
+
nparr = np.frombuffer(image_bytes, np.uint8)
|
161 |
+
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
162 |
+
return image
|
163 |
+
except Exception as e:
|
164 |
+
raise HTTPException(status_code=400, detail=f"Invalid image format: {str(e)}")
|
165 |
+
|
166 |
+
def encode_image_to_base64(image: np.ndarray) -> str:
|
167 |
+
"""
|
168 |
+
تشفير صورة إلى Base64
|
169 |
+
"""
|
170 |
+
_, buffer = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
171 |
+
return base64.b64encode(buffer).decode('utf-8')
|
172 |
+
|
173 |
+
# ================== نقاط نهاية الـ API ==================
|
174 |
+
@app.get("/")
|
175 |
+
async def root():
|
176 |
+
"""
|
177 |
+
نقطة البداية للـ API
|
178 |
+
"""
|
179 |
+
return {
|
180 |
+
"message": "InterFuser Self-Driving API",
|
181 |
+
"version": "1.0.0",
|
182 |
+
"status": "running",
|
183 |
+
"active_sessions": len(SESSIONS)
|
184 |
+
}
|
185 |
+
|
186 |
+
@app.post("/start_session", response_model=SessionResponse)
|
187 |
+
async def start_session():
|
188 |
+
"""
|
189 |
+
بدء جلسة جديدة للمحاكاة
|
190 |
+
"""
|
191 |
+
session_id = str(uuid.uuid4())
|
192 |
+
|
193 |
+
# إنشاء جلسة جديدة
|
194 |
+
SESSIONS[session_id] = {
|
195 |
+
'tracker': Tracker(frequency=10),
|
196 |
+
'controller': InterfuserController(ControllerConfig()),
|
197 |
+
'frame_num': 0,
|
198 |
+
'created_at': np.datetime64('now'),
|
199 |
+
'last_activity': np.datetime64('now')
|
200 |
+
}
|
201 |
+
|
202 |
+
logger.info(f"New session created: {session_id}")
|
203 |
+
|
204 |
+
return SessionResponse(
|
205 |
+
session_id=session_id,
|
206 |
+
message="Session started successfully"
|
207 |
+
)
|
208 |
+
|
209 |
+
@app.post("/run_step", response_model=RunStepOutput)
|
210 |
+
async def run_step(data: RunStepInput):
|
211 |
+
"""
|
212 |
+
تنفيذ خطوة محاكاة كاملة
|
213 |
+
"""
|
214 |
+
# التحقق من وجود الجلسة
|
215 |
+
if data.session_id not in SESSIONS:
|
216 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
217 |
+
|
218 |
+
session = SESSIONS[data.session_id]
|
219 |
+
tracker = session['tracker']
|
220 |
+
controller = session['controller']
|
221 |
+
|
222 |
+
# تحديث وقت النشاط
|
223 |
+
session['last_activity'] = np.datetime64('now')
|
224 |
+
|
225 |
+
try:
|
226 |
+
# 1. فك تشفير الصورة
|
227 |
+
frame_bgr = decode_base64_image(data.image_b64)
|
228 |
+
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
229 |
+
|
230 |
+
# 2. معالجة المدخلات
|
231 |
+
inputs = preprocess_input(frame_rgb, data.measurements, device)
|
232 |
+
|
233 |
+
# 3. تشغيل النموذج
|
234 |
+
if model is None:
|
235 |
+
raise HTTPException(status_code=500, detail="Model not loaded")
|
236 |
+
|
237 |
+
with torch.no_grad():
|
238 |
+
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = model(inputs)
|
239 |
+
|
240 |
+
# 4. معالجة مخرجات النموذج
|
241 |
+
traffic_np = traffic.cpu().numpy()[0] # أخذ أول عنصر من الـ batch
|
242 |
+
waypoints_np = waypoints.cpu().numpy()[0]
|
243 |
+
is_junction_prob = torch.sigmoid(is_junction)[0, 1].item()
|
244 |
+
traffic_light_prob = torch.sigmoid(traffic_light)[0, 0].item()
|
245 |
+
stop_sign_prob = torch.sigmoid(stop_sign)[0, 1].item()
|
246 |
+
|
247 |
+
# 5. تحديث التتبع
|
248 |
+
# تحويل traffic grid إلى detections للتتبع
|
249 |
+
detections = []
|
250 |
+
h, w, c = traffic_np.shape
|
251 |
+
for y in range(h):
|
252 |
+
for x in range(w):
|
253 |
+
for ch in range(c):
|
254 |
+
if traffic_np[y, x, ch] > 0.2: # عتبة الكشف
|
255 |
+
world_x = (x / w - 0.5) * 64 # تحويل إلى إحداثيات العالم
|
256 |
+
world_y = (y / h - 0.5) * 64
|
257 |
+
detections.append({
|
258 |
+
'position': [world_x, world_y],
|
259 |
+
'feature': traffic_np[y, x, ch]
|
260 |
+
})
|
261 |
+
|
262 |
+
updated_traffic = tracker.update_and_predict(detections, session['frame_num'])
|
263 |
+
|
264 |
+
# 6. تشغيل المتحكم
|
265 |
+
steer, throttle, brake, metadata = controller.run_step(
|
266 |
+
current_speed=data.measurements.speed,
|
267 |
+
waypoints=waypoints_np,
|
268 |
+
junction=is_junction_prob,
|
269 |
+
traffic_light_state=traffic_light_prob,
|
270 |
+
stop_sign=stop_sign_prob,
|
271 |
+
meta_data={'frame': session['frame_num']}
|
272 |
+
)
|
273 |
+
|
274 |
+
# 7. إنشاء خرائط العرض
|
275 |
+
surround_t0, counts_t0 = render(updated_traffic, t=0)
|
276 |
+
surround_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME)
|
277 |
+
surround_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME)
|
278 |
+
|
279 |
+
# إضافة المسار المقترح
|
280 |
+
wp_map = render_waypoints(waypoints_np)
|
281 |
+
map_t0 = cv2.add(surround_t0, wp_map)
|
282 |
+
|
283 |
+
# إضافة السيارة الذاتية
|
284 |
+
map_t0 = render_self_car(map_t0)
|
285 |
+
map_t1 = render_self_car(surround_t1)
|
286 |
+
map_t2 = render_self_car(surround_t2)
|
287 |
+
|
288 |
+
# 8. إنشاء لوحة العرض النهائية
|
289 |
+
interface_data = {
|
290 |
+
'camera_view': frame_bgr,
|
291 |
+
'map_t0': map_t0,
|
292 |
+
'map_t1': map_t1,
|
293 |
+
'map_t2': map_t2,
|
294 |
+
'text_info': {
|
295 |
+
'Frame': f"Frame: {session['frame_num']}",
|
296 |
+
'Control': f"Steer: {steer:.2f}, Throttle: {throttle:.2f}, Brake: {brake}",
|
297 |
+
'Speed': f"Speed: {data.measurements.speed:.1f} km/h",
|
298 |
+
'Junction': f"Junction: {is_junction_prob:.2f}",
|
299 |
+
'Traffic Light': f"Red Light: {traffic_light_prob:.2f}",
|
300 |
+
'Stop Sign': f"Stop Sign: {stop_sign_prob:.2f}",
|
301 |
+
'Metadata': metadata
|
302 |
+
},
|
303 |
+
'object_counts': {
|
304 |
+
't0': counts_t0,
|
305 |
+
't1': counts_t1,
|
306 |
+
't2': counts_t2
|
307 |
+
}
|
308 |
+
}
|
309 |
+
|
310 |
+
dashboard_image = display.run_interface(interface_data)
|
311 |
+
dashboard_b64 = encode_image_to_base64(dashboard_image)
|
312 |
+
|
313 |
+
# 9. تجميع المخرجات النهائية
|
314 |
+
response = RunStepOutput(
|
315 |
+
model_outputs=ModelOutputs(
|
316 |
+
traffic=traffic_np.tolist(),
|
317 |
+
waypoints=waypoints_np.tolist(),
|
318 |
+
is_junction=is_junction_prob,
|
319 |
+
traffic_light_state=traffic_light_prob,
|
320 |
+
stop_sign=stop_sign_prob
|
321 |
+
),
|
322 |
+
control_commands=ControlCommands(
|
323 |
+
steer=float(steer),
|
324 |
+
throttle=float(throttle),
|
325 |
+
brake=bool(brake)
|
326 |
+
),
|
327 |
+
dashboard_image_b64=dashboard_b64
|
328 |
+
)
|
329 |
+
|
330 |
+
# تحديث رقم الإطار
|
331 |
+
session['frame_num'] += 1
|
332 |
+
|
333 |
+
logger.info(f"Step completed for session {data.session_id}, frame {session['frame_num']}")
|
334 |
+
|
335 |
+
return response
|
336 |
+
|
337 |
+
except Exception as e:
|
338 |
+
logger.error(f"Error in run_step: {str(e)}")
|
339 |
+
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
340 |
+
|
341 |
+
@app.post("/end_session", response_model=SessionResponse)
|
342 |
+
async def end_session(session_id: str):
|
343 |
+
"""
|
344 |
+
إنهاء جلسة المحاكاة
|
345 |
+
"""
|
346 |
+
if session_id not in SESSIONS:
|
347 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
348 |
+
|
349 |
+
# حذف الجلسة
|
350 |
+
del SESSIONS[session_id]
|
351 |
+
|
352 |
+
logger.info(f"Session ended: {session_id}")
|
353 |
+
|
354 |
+
return SessionResponse(
|
355 |
+
session_id=session_id,
|
356 |
+
message="Session ended successfully"
|
357 |
+
)
|
358 |
+
|
359 |
+
@app.get("/sessions")
|
360 |
+
async def list_sessions():
|
361 |
+
"""
|
362 |
+
عرض قائمة الجلسات النشطة
|
363 |
+
"""
|
364 |
+
active_sessions = []
|
365 |
+
current_time = np.datetime64('now')
|
366 |
+
|
367 |
+
for session_id, session_data in SESSIONS.items():
|
368 |
+
time_diff = current_time - session_data['last_activity']
|
369 |
+
active_sessions.append({
|
370 |
+
'session_id': session_id,
|
371 |
+
'frame_count': session_data['frame_num'],
|
372 |
+
'created_at': str(session_data['created_at']),
|
373 |
+
'last_activity': str(session_data['last_activity']),
|
374 |
+
'inactive_minutes': float(time_diff / np.timedelta64(1, 'm'))
|
375 |
+
})
|
376 |
+
|
377 |
+
return {
|
378 |
+
'total_sessions': len(active_sessions),
|
379 |
+
'sessions': active_sessions
|
380 |
+
}
|
381 |
+
|
382 |
+
@app.delete("/sessions/cleanup")
|
383 |
+
async def cleanup_inactive_sessions(max_inactive_minutes: int = 30):
|
384 |
+
"""
|
385 |
+
تنظيف الجلسات غير النشطة
|
386 |
+
"""
|
387 |
+
current_time = np.datetime64('now')
|
388 |
+
cleaned_sessions = []
|
389 |
+
|
390 |
+
for session_id in list(SESSIONS.keys()):
|
391 |
+
session = SESSIONS[session_id]
|
392 |
+
time_diff = current_time - session['last_activity']
|
393 |
+
inactive_minutes = float(time_diff / np.timedelta64(1, 'm'))
|
394 |
+
|
395 |
+
if inactive_minutes > max_inactive_minutes:
|
396 |
+
del SESSIONS[session_id]
|
397 |
+
cleaned_sessions.append(session_id)
|
398 |
+
|
399 |
+
logger.info(f"Cleaned up {len(cleaned_sessions)} inactive sessions")
|
400 |
+
|
401 |
+
return {
|
402 |
+
'message': f"Cleaned up {len(cleaned_sessions)} inactive sessions",
|
403 |
+
'cleaned_sessions': cleaned_sessions,
|
404 |
+
'remaining_sessions': len(SESSIONS)
|
405 |
+
}
|
406 |
+
|
407 |
+
# ================== معالج الأخطاء ==================
|
408 |
+
@app.exception_handler(Exception)
|
409 |
+
async def global_exception_handler(request, exc):
|
410 |
+
logger.error(f"Global exception: {str(exc)}")
|
411 |
+
return {
|
412 |
+
"error": "Internal server error",
|
413 |
+
"detail": str(exc)
|
414 |
+
}
|
415 |
+
|
416 |
+
# ================== تشغيل الخادم ==================
|
417 |
+
if __name__ == "__main__":
|
418 |
+
import uvicorn
|
419 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
app_config.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: Baseer Self-Driving API
|
2 |
+
emoji: 🚗
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: green
|
5 |
+
sdk: docker
|
6 |
+
app_port: 7860
|
7 |
+
pinned: false
|
8 |
+
license: mit
|
9 |
+
short_description: API للقيادة الذاتية باستخدام نموذج Baseer InterFuser
|
10 |
+
tags:
|
11 |
+
- computer-vision
|
12 |
+
- autonomous-driving
|
13 |
+
- deep-learning
|
14 |
+
- fastapi
|
15 |
+
- pytorch
|
16 |
+
- interfuser
|
17 |
+
- graduation-project
|
health_check.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# health_check.py - فحص صحة النظام قبل النشر
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import torch
|
7 |
+
import logging
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
def check_python_version():
|
11 |
+
"""فحص إصدار Python"""
|
12 |
+
version = sys.version_info
|
13 |
+
if version.major == 3 and version.minor >= 9:
|
14 |
+
print(f"✅ Python {version.major}.{version.minor}.{version.micro}")
|
15 |
+
return True
|
16 |
+
else:
|
17 |
+
print(f"❌ Python {version.major}.{version.minor}.{version.micro} - يتطلب Python 3.9+")
|
18 |
+
return False
|
19 |
+
|
20 |
+
def check_pytorch():
|
21 |
+
"""فحص PyTorch"""
|
22 |
+
try:
|
23 |
+
print(f"✅ PyTorch {torch.__version__}")
|
24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
print(f"✅ Device: {device}")
|
26 |
+
return True
|
27 |
+
except Exception as e:
|
28 |
+
print(f"❌ PyTorch Error: {e}")
|
29 |
+
return False
|
30 |
+
|
31 |
+
def check_required_files():
|
32 |
+
"""فحص الملفات المطلوبة"""
|
33 |
+
required_files = [
|
34 |
+
"app.py",
|
35 |
+
"model_definition.py",
|
36 |
+
"simulation_modules.py",
|
37 |
+
"requirements.txt",
|
38 |
+
"Dockerfile",
|
39 |
+
"app_config.yaml",
|
40 |
+
"model/best_model.pth"
|
41 |
+
]
|
42 |
+
|
43 |
+
missing_files = []
|
44 |
+
for file in required_files:
|
45 |
+
if Path(file).exists():
|
46 |
+
size = Path(file).stat().st_size
|
47 |
+
print(f"✅ {file} ({size:,} bytes)")
|
48 |
+
else:
|
49 |
+
print(f"❌ {file} - مفقود")
|
50 |
+
missing_files.append(file)
|
51 |
+
|
52 |
+
return len(missing_files) == 0
|
53 |
+
|
54 |
+
def check_model_loading():
|
55 |
+
"""فحص تحميل النموذج"""
|
56 |
+
try:
|
57 |
+
from model_definition import InterfuserModel, create_model_config, load_and_prepare_model
|
58 |
+
|
59 |
+
# إنشاء إعدادات النموذج
|
60 |
+
config = create_model_config("model/best_model.pth")
|
61 |
+
print("✅ تم إنشاء إعدادات النموذج")
|
62 |
+
|
63 |
+
# تحميل النموذج
|
64 |
+
device = torch.device("cpu")
|
65 |
+
model = load_and_prepare_model(config, device)
|
66 |
+
print("✅ تم تحميل النموذج بنجاح")
|
67 |
+
|
68 |
+
return True
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
print(f"❌ خطأ في تحميل النموذج: {e}")
|
72 |
+
return False
|
73 |
+
|
74 |
+
def check_api_imports():
|
75 |
+
"""فحص استيراد مكونات الـ API"""
|
76 |
+
try:
|
77 |
+
from app import app
|
78 |
+
print("✅ تم استيراد FastAPI app")
|
79 |
+
|
80 |
+
from simulation_modules import DisplayInterface, InterfuserController
|
81 |
+
print("✅ تم استيراد وحدات المحاكاة")
|
82 |
+
|
83 |
+
return True
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
print(f"❌ خطأ في استيراد الـ API: {e}")
|
87 |
+
return False
|
88 |
+
|
89 |
+
def main():
|
90 |
+
"""الفحص الشامل للنظام"""
|
91 |
+
print("🔍 فحص صحة نظام Baseer Self-Driving API")
|
92 |
+
print("=" * 50)
|
93 |
+
|
94 |
+
checks = [
|
95 |
+
("Python Version", check_python_version),
|
96 |
+
("PyTorch", check_pytorch),
|
97 |
+
("Required Files", check_required_files),
|
98 |
+
("API Imports", check_api_imports),
|
99 |
+
("Model Loading", check_model_loading),
|
100 |
+
]
|
101 |
+
|
102 |
+
passed = 0
|
103 |
+
total = len(checks)
|
104 |
+
|
105 |
+
for name, check_func in checks:
|
106 |
+
print(f"\n🔍 {name}:")
|
107 |
+
try:
|
108 |
+
if check_func():
|
109 |
+
passed += 1
|
110 |
+
else:
|
111 |
+
print(f"❌ فشل في فحص {name}")
|
112 |
+
except Exception as e:
|
113 |
+
print(f"❌ خطأ في فحص {name}: {e}")
|
114 |
+
|
115 |
+
print("\n" + "=" * 50)
|
116 |
+
print(f"📊 النتيجة النهائية: {passed}/{total} فحوصات نجحت")
|
117 |
+
|
118 |
+
if passed == total:
|
119 |
+
print("🎉 النظام جاهز للنشر!")
|
120 |
+
return True
|
121 |
+
else:
|
122 |
+
print("⚠️ يجب إصلاح المشاكل قبل النشر")
|
123 |
+
return False
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
success = main()
|
127 |
+
sys.exit(0 if success else 1)
|
model/README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# InterFuser Model Directory
|
2 |
+
|
3 |
+
## Required Files
|
4 |
+
|
5 |
+
Place your trained InterFuser model files in this directory:
|
6 |
+
|
7 |
+
1. **`interfuser_model.pth`** - The main model weights file
|
8 |
+
2. **`config.json`** (optional) - Model configuration file
|
9 |
+
|
10 |
+
## Model Format
|
11 |
+
|
12 |
+
The model should be a PyTorch state dict saved with:
|
13 |
+
```python
|
14 |
+
torch.save(model.state_dict(), 'interfuser_model.pth')
|
15 |
+
```
|
16 |
+
|
17 |
+
## Loading in Code
|
18 |
+
|
19 |
+
The model is loaded in `model_definition.py`:
|
20 |
+
```python
|
21 |
+
model = InterFuserModel()
|
22 |
+
model.load_state_dict(torch.load('model/interfuser_model.pth', map_location='cpu'))
|
23 |
+
```
|
24 |
+
|
25 |
+
## Note
|
26 |
+
|
27 |
+
- The current implementation uses a dummy model for testing
|
28 |
+
- Replace with your actual trained InterFuser weights
|
29 |
+
- Ensure the model architecture matches the one defined in `model_definition.py`
|
model_definition.py
ADDED
@@ -0,0 +1,1318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model_definition.py
|
2 |
+
# ============================================================================
|
3 |
+
# الاستيرادات الأساسية
|
4 |
+
# ============================================================================
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.optim as optim
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
11 |
+
from torch.utils.data import Dataset, DataLoader
|
12 |
+
from torchvision import transforms
|
13 |
+
from functools import partial
|
14 |
+
from typing import Optional, List
|
15 |
+
from torch import Tensor
|
16 |
+
|
17 |
+
# مكتبات إضافية
|
18 |
+
import os
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import math
|
22 |
+
import copy
|
23 |
+
from pathlib import Path
|
24 |
+
from collections import OrderedDict
|
25 |
+
|
26 |
+
# مكتبات معالجة البيانات
|
27 |
+
import numpy as np
|
28 |
+
import cv2
|
29 |
+
|
30 |
+
# مكتبات اختيارية (يمكن تعطيلها إذا لم تكن متوفرة)
|
31 |
+
try:
|
32 |
+
import wandb
|
33 |
+
WANDB_AVAILABLE = True
|
34 |
+
except ImportError:
|
35 |
+
WANDB_AVAILABLE = False
|
36 |
+
|
37 |
+
try:
|
38 |
+
from tqdm import tqdm
|
39 |
+
except ImportError:
|
40 |
+
# إذا لم تكن tqdm متوفرة، استخدم دالة بديلة
|
41 |
+
def tqdm(iterable, *args, **kwargs):
|
42 |
+
return iterable
|
43 |
+
|
44 |
+
# ============================================================================
|
45 |
+
# دوال مساعدة
|
46 |
+
# ============================================================================
|
47 |
+
def to_2tuple(x):
|
48 |
+
"""تحويل قيمة إلى tuple من عنصرين"""
|
49 |
+
if isinstance(x, (list, tuple)):
|
50 |
+
return tuple(x)
|
51 |
+
return (x, x)
|
52 |
+
# ============================================================================
|
53 |
+
# ============================================================================
|
54 |
+
|
55 |
+
class HybridEmbed(nn.Module):
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
backbone,
|
59 |
+
img_size=224,
|
60 |
+
patch_size=1,
|
61 |
+
feature_size=None,
|
62 |
+
in_chans=3,
|
63 |
+
embed_dim=768,
|
64 |
+
):
|
65 |
+
super().__init__()
|
66 |
+
assert isinstance(backbone, nn.Module)
|
67 |
+
img_size = to_2tuple(img_size)
|
68 |
+
patch_size = to_2tuple(patch_size)
|
69 |
+
self.img_size = img_size
|
70 |
+
self.patch_size = patch_size
|
71 |
+
self.backbone = backbone
|
72 |
+
if feature_size is None:
|
73 |
+
with torch.no_grad():
|
74 |
+
training = backbone.training
|
75 |
+
if training:
|
76 |
+
backbone.eval()
|
77 |
+
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
|
78 |
+
if isinstance(o, (list, tuple)):
|
79 |
+
o = o[-1] # last feature if backbone outputs list/tuple of features
|
80 |
+
feature_size = o.shape[-2:]
|
81 |
+
feature_dim = o.shape[1]
|
82 |
+
backbone.train(training)
|
83 |
+
else:
|
84 |
+
feature_size = to_2tuple(feature_size)
|
85 |
+
if hasattr(self.backbone, "feature_info"):
|
86 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
87 |
+
else:
|
88 |
+
feature_dim = self.backbone.num_features
|
89 |
+
|
90 |
+
self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=1, stride=1)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
x = self.backbone(x)
|
94 |
+
if isinstance(x, (list, tuple)):
|
95 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
96 |
+
x = self.proj(x)
|
97 |
+
global_x = torch.mean(x, [2, 3], keepdim=False)[:, :, None]
|
98 |
+
return x, global_x
|
99 |
+
|
100 |
+
|
101 |
+
class PositionEmbeddingSine(nn.Module):
|
102 |
+
"""
|
103 |
+
This is a more standard version of the position embedding, very similar to the one
|
104 |
+
used by the Attention is all you need paper, generalized to work on images.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
self.num_pos_feats = num_pos_feats
|
112 |
+
self.temperature = temperature
|
113 |
+
self.normalize = normalize
|
114 |
+
if scale is not None and normalize is False:
|
115 |
+
raise ValueError("normalize should be True if scale is passed")
|
116 |
+
if scale is None:
|
117 |
+
scale = 2 * math.pi
|
118 |
+
self.scale = scale
|
119 |
+
|
120 |
+
def forward(self, tensor):
|
121 |
+
x = tensor
|
122 |
+
bs, _, h, w = x.shape
|
123 |
+
not_mask = torch.ones((bs, h, w), device=x.device)
|
124 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
125 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
126 |
+
if self.normalize:
|
127 |
+
eps = 1e-6
|
128 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
129 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
130 |
+
|
131 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
132 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
133 |
+
|
134 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
135 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
136 |
+
pos_x = torch.stack(
|
137 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
138 |
+
).flatten(3)
|
139 |
+
pos_y = torch.stack(
|
140 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
141 |
+
).flatten(3)
|
142 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
143 |
+
return pos
|
144 |
+
|
145 |
+
|
146 |
+
class TransformerEncoder(nn.Module):
|
147 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
148 |
+
super().__init__()
|
149 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
150 |
+
self.num_layers = num_layers
|
151 |
+
self.norm = norm
|
152 |
+
|
153 |
+
def forward(
|
154 |
+
self,
|
155 |
+
src,
|
156 |
+
mask: Optional[Tensor] = None,
|
157 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
158 |
+
pos: Optional[Tensor] = None,
|
159 |
+
):
|
160 |
+
output = src
|
161 |
+
|
162 |
+
for layer in self.layers:
|
163 |
+
output = layer(
|
164 |
+
output,
|
165 |
+
src_mask=mask,
|
166 |
+
src_key_padding_mask=src_key_padding_mask,
|
167 |
+
pos=pos,
|
168 |
+
)
|
169 |
+
|
170 |
+
if self.norm is not None:
|
171 |
+
output = self.norm(output)
|
172 |
+
|
173 |
+
return output
|
174 |
+
|
175 |
+
|
176 |
+
class SpatialSoftmax(nn.Module):
|
177 |
+
def __init__(self, height, width, channel, temperature=None, data_format="NCHW"):
|
178 |
+
super().__init__()
|
179 |
+
|
180 |
+
self.data_format = data_format
|
181 |
+
self.height = height
|
182 |
+
self.width = width
|
183 |
+
self.channel = channel
|
184 |
+
|
185 |
+
if temperature:
|
186 |
+
self.temperature = Parameter(torch.ones(1) * temperature)
|
187 |
+
else:
|
188 |
+
self.temperature = 1.0
|
189 |
+
|
190 |
+
pos_x, pos_y = np.meshgrid(
|
191 |
+
np.linspace(-1.0, 1.0, self.height), np.linspace(-1.0, 1.0, self.width)
|
192 |
+
)
|
193 |
+
pos_x = torch.from_numpy(pos_x.reshape(self.height * self.width)).float()
|
194 |
+
pos_y = torch.from_numpy(pos_y.reshape(self.height * self.width)).float()
|
195 |
+
self.register_buffer("pos_x", pos_x)
|
196 |
+
self.register_buffer("pos_y", pos_y)
|
197 |
+
|
198 |
+
def forward(self, feature):
|
199 |
+
# Output:
|
200 |
+
# (N, C*2) x_0 y_0 ...
|
201 |
+
|
202 |
+
if self.data_format == "NHWC":
|
203 |
+
feature = (
|
204 |
+
feature.transpose(1, 3)
|
205 |
+
.tranpose(2, 3)
|
206 |
+
.view(-1, self.height * self.width)
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
feature = feature.view(-1, self.height * self.width)
|
210 |
+
|
211 |
+
weight = F.softmax(feature / self.temperature, dim=-1)
|
212 |
+
expected_x = torch.sum(
|
213 |
+
torch.autograd.Variable(self.pos_x) * weight, dim=1, keepdim=True
|
214 |
+
)
|
215 |
+
expected_y = torch.sum(
|
216 |
+
torch.autograd.Variable(self.pos_y) * weight, dim=1, keepdim=True
|
217 |
+
)
|
218 |
+
expected_xy = torch.cat([expected_x, expected_y], 1)
|
219 |
+
feature_keypoints = expected_xy.view(-1, self.channel, 2)
|
220 |
+
feature_keypoints[:, :, 1] = (feature_keypoints[:, :, 1] - 1) * 12
|
221 |
+
feature_keypoints[:, :, 0] = feature_keypoints[:, :, 0] * 12
|
222 |
+
return feature_keypoints
|
223 |
+
|
224 |
+
|
225 |
+
class MultiPath_Generator(nn.Module):
|
226 |
+
def __init__(self, in_channel, embed_dim, out_channel):
|
227 |
+
super().__init__()
|
228 |
+
self.spatial_softmax = SpatialSoftmax(100, 100, out_channel)
|
229 |
+
self.tconv0 = nn.Sequential(
|
230 |
+
nn.ConvTranspose2d(in_channel, 256, 4, 2, 1, bias=False),
|
231 |
+
nn.BatchNorm2d(256),
|
232 |
+
nn.ReLU(True),
|
233 |
+
)
|
234 |
+
self.tconv1 = nn.Sequential(
|
235 |
+
nn.ConvTranspose2d(256, 256, 4, 2, 1, bias=False),
|
236 |
+
nn.BatchNorm2d(256),
|
237 |
+
nn.ReLU(True),
|
238 |
+
)
|
239 |
+
self.tconv2 = nn.Sequential(
|
240 |
+
nn.ConvTranspose2d(256, 192, 4, 2, 1, bias=False),
|
241 |
+
nn.BatchNorm2d(192),
|
242 |
+
nn.ReLU(True),
|
243 |
+
)
|
244 |
+
self.tconv3 = nn.Sequential(
|
245 |
+
nn.ConvTranspose2d(192, 64, 4, 2, 1, bias=False),
|
246 |
+
nn.BatchNorm2d(64),
|
247 |
+
nn.ReLU(True),
|
248 |
+
)
|
249 |
+
self.tconv4_list = torch.nn.ModuleList(
|
250 |
+
[
|
251 |
+
nn.Sequential(
|
252 |
+
nn.ConvTranspose2d(64, out_channel, 8, 2, 3, bias=False),
|
253 |
+
nn.Tanh(),
|
254 |
+
)
|
255 |
+
for _ in range(6)
|
256 |
+
]
|
257 |
+
)
|
258 |
+
|
259 |
+
self.upsample = nn.Upsample(size=(50, 50), mode="bilinear")
|
260 |
+
|
261 |
+
def forward(self, x, measurements):
|
262 |
+
mask = measurements[:, :6]
|
263 |
+
mask = mask.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, 100, 100)
|
264 |
+
velocity = measurements[:, 6:7].unsqueeze(-1).unsqueeze(-1)
|
265 |
+
velocity = velocity.repeat(1, 32, 2, 2)
|
266 |
+
|
267 |
+
n, d, c = x.shape
|
268 |
+
x = x.transpose(1, 2)
|
269 |
+
x = x.view(n, -1, 2, 2)
|
270 |
+
x = torch.cat([x, velocity], dim=1)
|
271 |
+
x = self.tconv0(x)
|
272 |
+
x = self.tconv1(x)
|
273 |
+
x = self.tconv2(x)
|
274 |
+
x = self.tconv3(x)
|
275 |
+
x = self.upsample(x)
|
276 |
+
xs = []
|
277 |
+
for i in range(6):
|
278 |
+
xt = self.tconv4_list[i](x)
|
279 |
+
xs.append(xt)
|
280 |
+
xs = torch.stack(xs, dim=1)
|
281 |
+
x = torch.sum(xs * mask, dim=1)
|
282 |
+
x = self.spatial_softmax(x)
|
283 |
+
return x
|
284 |
+
|
285 |
+
|
286 |
+
class LinearWaypointsPredictor(nn.Module):
|
287 |
+
def __init__(self, input_dim, cumsum=True):
|
288 |
+
super().__init__()
|
289 |
+
self.cumsum = cumsum
|
290 |
+
self.rank_embed = nn.Parameter(torch.zeros(1, 10, input_dim))
|
291 |
+
self.head_fc1_list = nn.ModuleList([nn.Linear(input_dim, 64) for _ in range(6)])
|
292 |
+
self.head_relu = nn.ReLU(inplace=True)
|
293 |
+
self.head_fc2_list = nn.ModuleList([nn.Linear(64, 2) for _ in range(6)])
|
294 |
+
|
295 |
+
def forward(self, x, measurements):
|
296 |
+
# input shape: n 10 embed_dim
|
297 |
+
bs, n, dim = x.shape
|
298 |
+
x = x + self.rank_embed
|
299 |
+
x = x.reshape(-1, dim)
|
300 |
+
|
301 |
+
mask = measurements[:, :6]
|
302 |
+
mask = torch.unsqueeze(mask, -1).repeat(n, 1, 2)
|
303 |
+
|
304 |
+
rs = []
|
305 |
+
for i in range(6):
|
306 |
+
res = self.head_fc1_list[i](x)
|
307 |
+
res = self.head_relu(res)
|
308 |
+
res = self.head_fc2_list[i](res)
|
309 |
+
rs.append(res)
|
310 |
+
rs = torch.stack(rs, 1)
|
311 |
+
x = torch.sum(rs * mask, dim=1)
|
312 |
+
|
313 |
+
x = x.view(bs, n, 2)
|
314 |
+
if self.cumsum:
|
315 |
+
x = torch.cumsum(x, 1)
|
316 |
+
return x
|
317 |
+
|
318 |
+
|
319 |
+
class GRUWaypointsPredictor(nn.Module):
|
320 |
+
def __init__(self, input_dim, waypoints=10):
|
321 |
+
super().__init__()
|
322 |
+
# self.gru = torch.nn.GRUCell(input_size=input_dim, hidden_size=64)
|
323 |
+
self.gru = torch.nn.GRU(input_size=input_dim, hidden_size=64, batch_first=True)
|
324 |
+
self.encoder = nn.Linear(2, 64)
|
325 |
+
self.decoder = nn.Linear(64, 2)
|
326 |
+
self.waypoints = waypoints
|
327 |
+
|
328 |
+
def forward(self, x, target_point):
|
329 |
+
bs = x.shape[0]
|
330 |
+
z = self.encoder(target_point).unsqueeze(0)
|
331 |
+
output, _ = self.gru(x, z)
|
332 |
+
output = output.reshape(bs * self.waypoints, -1)
|
333 |
+
output = self.decoder(output).reshape(bs, self.waypoints, 2)
|
334 |
+
output = torch.cumsum(output, 1)
|
335 |
+
return output
|
336 |
+
|
337 |
+
class GRUWaypointsPredictorWithCommand(nn.Module):
|
338 |
+
def __init__(self, input_dim, waypoints=10):
|
339 |
+
super().__init__()
|
340 |
+
# self.gru = torch.nn.GRUCell(input_size=input_dim, hidden_size=64)
|
341 |
+
self.grus = nn.ModuleList([torch.nn.GRU(input_size=input_dim, hidden_size=64, batch_first=True) for _ in range(6)])
|
342 |
+
self.encoder = nn.Linear(2, 64)
|
343 |
+
self.decoders = nn.ModuleList([nn.Linear(64, 2) for _ in range(6)])
|
344 |
+
self.waypoints = waypoints
|
345 |
+
|
346 |
+
def forward(self, x, target_point, measurements):
|
347 |
+
bs, n, dim = x.shape
|
348 |
+
mask = measurements[:, :6, None, None]
|
349 |
+
mask = mask.repeat(1, 1, self.waypoints, 2)
|
350 |
+
|
351 |
+
z = self.encoder(target_point).unsqueeze(0)
|
352 |
+
outputs = []
|
353 |
+
for i in range(6):
|
354 |
+
output, _ = self.grus[i](x, z)
|
355 |
+
output = output.reshape(bs * self.waypoints, -1)
|
356 |
+
output = self.decoders[i](output).reshape(bs, self.waypoints, 2)
|
357 |
+
output = torch.cumsum(output, 1)
|
358 |
+
outputs.append(output)
|
359 |
+
outputs = torch.stack(outputs, 1)
|
360 |
+
output = torch.sum(outputs * mask, dim=1)
|
361 |
+
return output
|
362 |
+
|
363 |
+
|
364 |
+
class TransformerDecoder(nn.Module):
|
365 |
+
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
366 |
+
super().__init__()
|
367 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
368 |
+
self.num_layers = num_layers
|
369 |
+
self.norm = norm
|
370 |
+
self.return_intermediate = return_intermediate
|
371 |
+
|
372 |
+
def forward(
|
373 |
+
self,
|
374 |
+
tgt,
|
375 |
+
memory,
|
376 |
+
tgt_mask: Optional[Tensor] = None,
|
377 |
+
memory_mask: Optional[Tensor] = None,
|
378 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
379 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
380 |
+
pos: Optional[Tensor] = None,
|
381 |
+
query_pos: Optional[Tensor] = None,
|
382 |
+
):
|
383 |
+
output = tgt
|
384 |
+
|
385 |
+
intermediate = []
|
386 |
+
|
387 |
+
for layer in self.layers:
|
388 |
+
output = layer(
|
389 |
+
output,
|
390 |
+
memory,
|
391 |
+
tgt_mask=tgt_mask,
|
392 |
+
memory_mask=memory_mask,
|
393 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
394 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
395 |
+
pos=pos,
|
396 |
+
query_pos=query_pos,
|
397 |
+
)
|
398 |
+
if self.return_intermediate:
|
399 |
+
intermediate.append(self.norm(output))
|
400 |
+
|
401 |
+
if self.norm is not None:
|
402 |
+
output = self.norm(output)
|
403 |
+
if self.return_intermediate:
|
404 |
+
intermediate.pop()
|
405 |
+
intermediate.append(output)
|
406 |
+
|
407 |
+
if self.return_intermediate:
|
408 |
+
return torch.stack(intermediate)
|
409 |
+
|
410 |
+
return output.unsqueeze(0)
|
411 |
+
|
412 |
+
|
413 |
+
class TransformerEncoderLayer(nn.Module):
|
414 |
+
def __init__(
|
415 |
+
self,
|
416 |
+
d_model,
|
417 |
+
nhead,
|
418 |
+
dim_feedforward=2048,
|
419 |
+
dropout=0.1,
|
420 |
+
activation=nn.ReLU(),
|
421 |
+
normalize_before=False,
|
422 |
+
):
|
423 |
+
super().__init__()
|
424 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
425 |
+
# Implementation of Feedforward model
|
426 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
427 |
+
self.dropout = nn.Dropout(dropout)
|
428 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
429 |
+
|
430 |
+
self.norm1 = nn.LayerNorm(d_model)
|
431 |
+
self.norm2 = nn.LayerNorm(d_model)
|
432 |
+
self.dropout1 = nn.Dropout(dropout)
|
433 |
+
self.dropout2 = nn.Dropout(dropout)
|
434 |
+
|
435 |
+
self.activation = activation()
|
436 |
+
self.normalize_before = normalize_before
|
437 |
+
|
438 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
439 |
+
return tensor if pos is None else tensor + pos
|
440 |
+
|
441 |
+
def forward_post(
|
442 |
+
self,
|
443 |
+
src,
|
444 |
+
src_mask: Optional[Tensor] = None,
|
445 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
446 |
+
pos: Optional[Tensor] = None,
|
447 |
+
):
|
448 |
+
q = k = self.with_pos_embed(src, pos)
|
449 |
+
src2 = self.self_attn(
|
450 |
+
q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
451 |
+
)[0]
|
452 |
+
src = src + self.dropout1(src2)
|
453 |
+
src = self.norm1(src)
|
454 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
455 |
+
src = src + self.dropout2(src2)
|
456 |
+
src = self.norm2(src)
|
457 |
+
return src
|
458 |
+
|
459 |
+
def forward_pre(
|
460 |
+
self,
|
461 |
+
src,
|
462 |
+
src_mask: Optional[Tensor] = None,
|
463 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
464 |
+
pos: Optional[Tensor] = None,
|
465 |
+
):
|
466 |
+
src2 = self.norm1(src)
|
467 |
+
q = k = self.with_pos_embed(src2, pos)
|
468 |
+
src2 = self.self_attn(
|
469 |
+
q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
470 |
+
)[0]
|
471 |
+
src = src + self.dropout1(src2)
|
472 |
+
src2 = self.norm2(src)
|
473 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
474 |
+
src = src + self.dropout2(src2)
|
475 |
+
return src
|
476 |
+
|
477 |
+
def forward(
|
478 |
+
self,
|
479 |
+
src,
|
480 |
+
src_mask: Optional[Tensor] = None,
|
481 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
482 |
+
pos: Optional[Tensor] = None,
|
483 |
+
):
|
484 |
+
if self.normalize_before:
|
485 |
+
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
486 |
+
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
487 |
+
|
488 |
+
|
489 |
+
class TransformerDecoderLayer(nn.Module):
|
490 |
+
def __init__(
|
491 |
+
self,
|
492 |
+
d_model,
|
493 |
+
nhead,
|
494 |
+
dim_feedforward=2048,
|
495 |
+
dropout=0.1,
|
496 |
+
activation=nn.ReLU(),
|
497 |
+
normalize_before=False,
|
498 |
+
):
|
499 |
+
super().__init__()
|
500 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
501 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
502 |
+
# Implementation of Feedforward model
|
503 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
504 |
+
self.dropout = nn.Dropout(dropout)
|
505 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
506 |
+
|
507 |
+
self.norm1 = nn.LayerNorm(d_model)
|
508 |
+
self.norm2 = nn.LayerNorm(d_model)
|
509 |
+
self.norm3 = nn.LayerNorm(d_model)
|
510 |
+
self.dropout1 = nn.Dropout(dropout)
|
511 |
+
self.dropout2 = nn.Dropout(dropout)
|
512 |
+
self.dropout3 = nn.Dropout(dropout)
|
513 |
+
|
514 |
+
self.activation = activation()
|
515 |
+
self.normalize_before = normalize_before
|
516 |
+
|
517 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
518 |
+
return tensor if pos is None else tensor + pos
|
519 |
+
|
520 |
+
def forward_post(
|
521 |
+
self,
|
522 |
+
tgt,
|
523 |
+
memory,
|
524 |
+
tgt_mask: Optional[Tensor] = None,
|
525 |
+
memory_mask: Optional[Tensor] = None,
|
526 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
527 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
528 |
+
pos: Optional[Tensor] = None,
|
529 |
+
query_pos: Optional[Tensor] = None,
|
530 |
+
):
|
531 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
532 |
+
tgt2 = self.self_attn(
|
533 |
+
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
534 |
+
)[0]
|
535 |
+
tgt = tgt + self.dropout1(tgt2)
|
536 |
+
tgt = self.norm1(tgt)
|
537 |
+
tgt2 = self.multihead_attn(
|
538 |
+
query=self.with_pos_embed(tgt, query_pos),
|
539 |
+
key=self.with_pos_embed(memory, pos),
|
540 |
+
value=memory,
|
541 |
+
attn_mask=memory_mask,
|
542 |
+
key_padding_mask=memory_key_padding_mask,
|
543 |
+
)[0]
|
544 |
+
tgt = tgt + self.dropout2(tgt2)
|
545 |
+
tgt = self.norm2(tgt)
|
546 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
547 |
+
tgt = tgt + self.dropout3(tgt2)
|
548 |
+
tgt = self.norm3(tgt)
|
549 |
+
return tgt
|
550 |
+
|
551 |
+
def forward_pre(
|
552 |
+
self,
|
553 |
+
tgt,
|
554 |
+
memory,
|
555 |
+
tgt_mask: Optional[Tensor] = None,
|
556 |
+
memory_mask: Optional[Tensor] = None,
|
557 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
558 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
559 |
+
pos: Optional[Tensor] = None,
|
560 |
+
query_pos: Optional[Tensor] = None,
|
561 |
+
):
|
562 |
+
tgt2 = self.norm1(tgt)
|
563 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
564 |
+
tgt2 = self.self_attn(
|
565 |
+
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
566 |
+
)[0]
|
567 |
+
tgt = tgt + self.dropout1(tgt2)
|
568 |
+
tgt2 = self.norm2(tgt)
|
569 |
+
tgt2 = self.multihead_attn(
|
570 |
+
query=self.with_pos_embed(tgt2, query_pos),
|
571 |
+
key=self.with_pos_embed(memory, pos),
|
572 |
+
value=memory,
|
573 |
+
attn_mask=memory_mask,
|
574 |
+
key_padding_mask=memory_key_padding_mask,
|
575 |
+
)[0]
|
576 |
+
tgt = tgt + self.dropout2(tgt2)
|
577 |
+
tgt2 = self.norm3(tgt)
|
578 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
579 |
+
tgt = tgt + self.dropout3(tgt2)
|
580 |
+
return tgt
|
581 |
+
|
582 |
+
def forward(
|
583 |
+
self,
|
584 |
+
tgt,
|
585 |
+
memory,
|
586 |
+
tgt_mask: Optional[Tensor] = None,
|
587 |
+
memory_mask: Optional[Tensor] = None,
|
588 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
589 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
590 |
+
pos: Optional[Tensor] = None,
|
591 |
+
query_pos: Optional[Tensor] = None,
|
592 |
+
):
|
593 |
+
if self.normalize_before:
|
594 |
+
return self.forward_pre(
|
595 |
+
tgt,
|
596 |
+
memory,
|
597 |
+
tgt_mask,
|
598 |
+
memory_mask,
|
599 |
+
tgt_key_padding_mask,
|
600 |
+
memory_key_padding_mask,
|
601 |
+
pos,
|
602 |
+
query_pos,
|
603 |
+
)
|
604 |
+
return self.forward_post(
|
605 |
+
tgt,
|
606 |
+
memory,
|
607 |
+
tgt_mask,
|
608 |
+
memory_mask,
|
609 |
+
tgt_key_padding_mask,
|
610 |
+
memory_key_padding_mask,
|
611 |
+
pos,
|
612 |
+
query_pos,
|
613 |
+
)
|
614 |
+
|
615 |
+
|
616 |
+
def _get_clones(module, N):
|
617 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
618 |
+
|
619 |
+
|
620 |
+
def _get_activation_fn(activation):
|
621 |
+
"""Return an activation function given a string"""
|
622 |
+
if activation == "relu":
|
623 |
+
return F.relu
|
624 |
+
if activation == "gelu":
|
625 |
+
return F.gelu
|
626 |
+
if activation == "glu":
|
627 |
+
return F.glu
|
628 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
629 |
+
|
630 |
+
|
631 |
+
def build_attn_mask(mask_type):
|
632 |
+
mask = torch.ones((151, 151), dtype=torch.bool).cuda()
|
633 |
+
if mask_type == "seperate_all":
|
634 |
+
mask[:50, :50] = False
|
635 |
+
mask[50:67, 50:67] = False
|
636 |
+
mask[67:84, 67:84] = False
|
637 |
+
mask[84:101, 84:101] = False
|
638 |
+
mask[101:151, 101:151] = False
|
639 |
+
elif mask_type == "seperate_view":
|
640 |
+
mask[:50, :50] = False
|
641 |
+
mask[50:67, 50:67] = False
|
642 |
+
mask[67:84, 67:84] = False
|
643 |
+
mask[84:101, 84:101] = False
|
644 |
+
mask[101:151, :] = False
|
645 |
+
mask[:, 101:151] = False
|
646 |
+
return mask
|
647 |
+
# class InterfuserModel(nn.Module):
|
648 |
+
|
649 |
+
class InterfuserModel(nn.Module):
|
650 |
+
def __init__(
|
651 |
+
self,
|
652 |
+
img_size=224,
|
653 |
+
multi_view_img_size=112,
|
654 |
+
patch_size=8,
|
655 |
+
in_chans=3,
|
656 |
+
embed_dim=768,
|
657 |
+
enc_depth=6,
|
658 |
+
dec_depth=6,
|
659 |
+
dim_feedforward=2048,
|
660 |
+
normalize_before=False,
|
661 |
+
rgb_backbone_name="r50",
|
662 |
+
lidar_backbone_name="r50",
|
663 |
+
num_heads=8,
|
664 |
+
norm_layer=None,
|
665 |
+
dropout=0.1,
|
666 |
+
end2end=False,
|
667 |
+
direct_concat=False,
|
668 |
+
separate_view_attention=False,
|
669 |
+
separate_all_attention=False,
|
670 |
+
act_layer=None,
|
671 |
+
weight_init="",
|
672 |
+
freeze_num=-1,
|
673 |
+
with_lidar=False,
|
674 |
+
with_right_left_sensors=False,
|
675 |
+
with_center_sensor=False,
|
676 |
+
traffic_pred_head_type="det",
|
677 |
+
waypoints_pred_head="heatmap",
|
678 |
+
reverse_pos=True,
|
679 |
+
use_different_backbone=False,
|
680 |
+
use_view_embed=False,
|
681 |
+
use_mmad_pretrain=None,
|
682 |
+
):
|
683 |
+
super().__init__()
|
684 |
+
self.traffic_pred_head_type = traffic_pred_head_type
|
685 |
+
self.num_features = (
|
686 |
+
self.embed_dim
|
687 |
+
) = embed_dim # num_features for consistency with other models
|
688 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
689 |
+
act_layer = act_layer or nn.GELU
|
690 |
+
|
691 |
+
self.reverse_pos = reverse_pos
|
692 |
+
self.waypoints_pred_head = waypoints_pred_head
|
693 |
+
self.with_lidar = with_lidar
|
694 |
+
self.with_right_left_sensors = with_right_left_sensors
|
695 |
+
self.with_center_sensor = with_center_sensor
|
696 |
+
|
697 |
+
self.direct_concat = direct_concat
|
698 |
+
self.separate_view_attention = separate_view_attention
|
699 |
+
self.separate_all_attention = separate_all_attention
|
700 |
+
self.end2end = end2end
|
701 |
+
self.use_view_embed = use_view_embed
|
702 |
+
|
703 |
+
if self.direct_concat:
|
704 |
+
in_chans = in_chans * 4
|
705 |
+
self.with_center_sensor = False
|
706 |
+
self.with_right_left_sensors = False
|
707 |
+
|
708 |
+
if self.separate_view_attention:
|
709 |
+
self.attn_mask = build_attn_mask("seperate_view")
|
710 |
+
elif self.separate_all_attention:
|
711 |
+
self.attn_mask = build_attn_mask("seperate_all")
|
712 |
+
else:
|
713 |
+
self.attn_mask = None
|
714 |
+
|
715 |
+
if use_different_backbone:
|
716 |
+
if rgb_backbone_name == "r50":
|
717 |
+
self.rgb_backbone = resnet50d(
|
718 |
+
pretrained=True,
|
719 |
+
in_chans=in_chans,
|
720 |
+
features_only=True,
|
721 |
+
out_indices=[4],
|
722 |
+
)
|
723 |
+
elif rgb_backbone_name == "r26":
|
724 |
+
self.rgb_backbone = resnet26d(
|
725 |
+
pretrained=True,
|
726 |
+
in_chans=in_chans,
|
727 |
+
features_only=True,
|
728 |
+
out_indices=[4],
|
729 |
+
)
|
730 |
+
elif rgb_backbone_name == "r18":
|
731 |
+
self.rgb_backbone = resnet18d(
|
732 |
+
pretrained=True,
|
733 |
+
in_chans=in_chans,
|
734 |
+
features_only=True,
|
735 |
+
out_indices=[4],
|
736 |
+
)
|
737 |
+
if lidar_backbone_name == "r50":
|
738 |
+
self.lidar_backbone = resnet50d(
|
739 |
+
pretrained=False,
|
740 |
+
in_chans=in_chans,
|
741 |
+
features_only=True,
|
742 |
+
out_indices=[4],
|
743 |
+
)
|
744 |
+
elif lidar_backbone_name == "r26":
|
745 |
+
self.lidar_backbone = resnet26d(
|
746 |
+
pretrained=False,
|
747 |
+
in_chans=in_chans,
|
748 |
+
features_only=True,
|
749 |
+
out_indices=[4],
|
750 |
+
)
|
751 |
+
elif lidar_backbone_name == "r18":
|
752 |
+
self.lidar_backbone = resnet18d(
|
753 |
+
pretrained=False, in_chans=3, features_only=True, out_indices=[4]
|
754 |
+
)
|
755 |
+
rgb_embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
|
756 |
+
lidar_embed_layer = partial(HybridEmbed, backbone=self.lidar_backbone)
|
757 |
+
|
758 |
+
if use_mmad_pretrain:
|
759 |
+
params = torch.load(use_mmad_pretrain)["state_dict"]
|
760 |
+
updated_params = OrderedDict()
|
761 |
+
for key in params:
|
762 |
+
if "backbone" in key:
|
763 |
+
updated_params[key.replace("backbone.", "")] = params[key]
|
764 |
+
self.rgb_backbone.load_state_dict(updated_params)
|
765 |
+
|
766 |
+
self.rgb_patch_embed = rgb_embed_layer(
|
767 |
+
img_size=img_size,
|
768 |
+
patch_size=patch_size,
|
769 |
+
in_chans=in_chans,
|
770 |
+
embed_dim=embed_dim,
|
771 |
+
)
|
772 |
+
self.lidar_patch_embed = lidar_embed_layer(
|
773 |
+
img_size=img_size,
|
774 |
+
patch_size=patch_size,
|
775 |
+
in_chans=3,
|
776 |
+
embed_dim=embed_dim,
|
777 |
+
)
|
778 |
+
else:
|
779 |
+
if rgb_backbone_name == "r50":
|
780 |
+
self.rgb_backbone = resnet50d(
|
781 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
782 |
+
)
|
783 |
+
elif rgb_backbone_name == "r101":
|
784 |
+
self.rgb_backbone = resnet101d(
|
785 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
786 |
+
)
|
787 |
+
elif rgb_backbone_name == "r26":
|
788 |
+
self.rgb_backbone = resnet26d(
|
789 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
790 |
+
)
|
791 |
+
elif rgb_backbone_name == "r18":
|
792 |
+
self.rgb_backbone = resnet18d(
|
793 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
794 |
+
)
|
795 |
+
embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
|
796 |
+
|
797 |
+
self.rgb_patch_embed = embed_layer(
|
798 |
+
img_size=img_size,
|
799 |
+
patch_size=patch_size,
|
800 |
+
in_chans=in_chans,
|
801 |
+
embed_dim=embed_dim,
|
802 |
+
)
|
803 |
+
self.lidar_patch_embed = embed_layer(
|
804 |
+
img_size=img_size,
|
805 |
+
patch_size=patch_size,
|
806 |
+
in_chans=in_chans,
|
807 |
+
embed_dim=embed_dim,
|
808 |
+
)
|
809 |
+
|
810 |
+
self.global_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
|
811 |
+
self.view_embed = nn.Parameter(torch.zeros(1, embed_dim, 5, 1))
|
812 |
+
|
813 |
+
if self.end2end:
|
814 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 4))
|
815 |
+
self.query_embed = nn.Parameter(torch.zeros(4, 1, embed_dim))
|
816 |
+
elif self.waypoints_pred_head == "heatmap":
|
817 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
|
818 |
+
self.query_embed = nn.Parameter(torch.zeros(400 + 5, 1, embed_dim))
|
819 |
+
else:
|
820 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 11))
|
821 |
+
self.query_embed = nn.Parameter(torch.zeros(400 + 11, 1, embed_dim))
|
822 |
+
|
823 |
+
if self.end2end:
|
824 |
+
self.waypoints_generator = GRUWaypointsPredictor(embed_dim, 4)
|
825 |
+
elif self.waypoints_pred_head == "heatmap":
|
826 |
+
self.waypoints_generator = MultiPath_Generator(
|
827 |
+
embed_dim + 32, embed_dim, 10
|
828 |
+
)
|
829 |
+
elif self.waypoints_pred_head == "gru":
|
830 |
+
self.waypoints_generator = GRUWaypointsPredictor(embed_dim)
|
831 |
+
elif self.waypoints_pred_head == "gru-command":
|
832 |
+
self.waypoints_generator = GRUWaypointsPredictorWithCommand(embed_dim)
|
833 |
+
elif self.waypoints_pred_head == "linear":
|
834 |
+
self.waypoints_generator = LinearWaypointsPredictor(embed_dim)
|
835 |
+
elif self.waypoints_pred_head == "linear-sum":
|
836 |
+
self.waypoints_generator = LinearWaypointsPredictor(embed_dim, cumsum=True)
|
837 |
+
|
838 |
+
self.junction_pred_head = nn.Linear(embed_dim, 2)
|
839 |
+
self.traffic_light_pred_head = nn.Linear(embed_dim, 2)
|
840 |
+
self.stop_sign_head = nn.Linear(embed_dim, 2)
|
841 |
+
|
842 |
+
if self.traffic_pred_head_type == "det":
|
843 |
+
self.traffic_pred_head = nn.Sequential(
|
844 |
+
*[
|
845 |
+
nn.Linear(embed_dim + 32, 64),
|
846 |
+
nn.ReLU(),
|
847 |
+
nn.Linear(64, 7),
|
848 |
+
# nn.Sigmoid(),
|
849 |
+
]
|
850 |
+
)
|
851 |
+
elif self.traffic_pred_head_type == "seg":
|
852 |
+
self.traffic_pred_head = nn.Sequential(
|
853 |
+
*[nn.Linear(embed_dim, 64), nn.ReLU(), nn.Linear(64, 1), nn.Sigmoid()]
|
854 |
+
)
|
855 |
+
|
856 |
+
self.position_encoding = PositionEmbeddingSine(embed_dim // 2, normalize=True)
|
857 |
+
|
858 |
+
encoder_layer = TransformerEncoderLayer(
|
859 |
+
embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before
|
860 |
+
)
|
861 |
+
self.encoder = TransformerEncoder(encoder_layer, enc_depth, None)
|
862 |
+
|
863 |
+
decoder_layer = TransformerDecoderLayer(
|
864 |
+
embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before
|
865 |
+
)
|
866 |
+
decoder_norm = nn.LayerNorm(embed_dim)
|
867 |
+
self.decoder = TransformerDecoder(
|
868 |
+
decoder_layer, dec_depth, decoder_norm, return_intermediate=False
|
869 |
+
)
|
870 |
+
self.reset_parameters()
|
871 |
+
|
872 |
+
def reset_parameters(self):
|
873 |
+
nn.init.uniform_(self.global_embed)
|
874 |
+
nn.init.uniform_(self.view_embed)
|
875 |
+
nn.init.uniform_(self.query_embed)
|
876 |
+
nn.init.uniform_(self.query_pos_embed)
|
877 |
+
|
878 |
+
def forward_features(
|
879 |
+
self,
|
880 |
+
front_image,
|
881 |
+
left_image,
|
882 |
+
right_image,
|
883 |
+
front_center_image,
|
884 |
+
lidar,
|
885 |
+
measurements,
|
886 |
+
):
|
887 |
+
features = []
|
888 |
+
|
889 |
+
# Front view processing
|
890 |
+
front_image_token, front_image_token_global = self.rgb_patch_embed(front_image)
|
891 |
+
if self.use_view_embed:
|
892 |
+
front_image_token = (
|
893 |
+
front_image_token
|
894 |
+
+ self.view_embed[:, :, 0:1, :]
|
895 |
+
+ self.position_encoding(front_image_token)
|
896 |
+
)
|
897 |
+
else:
|
898 |
+
front_image_token = front_image_token + self.position_encoding(
|
899 |
+
front_image_token
|
900 |
+
)
|
901 |
+
front_image_token = front_image_token.flatten(2).permute(2, 0, 1)
|
902 |
+
front_image_token_global = (
|
903 |
+
front_image_token_global
|
904 |
+
+ self.view_embed[:, :, 0, :]
|
905 |
+
+ self.global_embed[:, :, 0:1]
|
906 |
+
)
|
907 |
+
front_image_token_global = front_image_token_global.permute(2, 0, 1)
|
908 |
+
features.extend([front_image_token, front_image_token_global])
|
909 |
+
|
910 |
+
if self.with_right_left_sensors:
|
911 |
+
# Left view processing
|
912 |
+
left_image_token, left_image_token_global = self.rgb_patch_embed(left_image)
|
913 |
+
if self.use_view_embed:
|
914 |
+
left_image_token = (
|
915 |
+
left_image_token
|
916 |
+
+ self.view_embed[:, :, 1:2, :]
|
917 |
+
+ self.position_encoding(left_image_token)
|
918 |
+
)
|
919 |
+
else:
|
920 |
+
left_image_token = left_image_token + self.position_encoding(
|
921 |
+
left_image_token
|
922 |
+
)
|
923 |
+
left_image_token = left_image_token.flatten(2).permute(2, 0, 1)
|
924 |
+
left_image_token_global = (
|
925 |
+
left_image_token_global
|
926 |
+
+ self.view_embed[:, :, 1, :]
|
927 |
+
+ self.global_embed[:, :, 1:2]
|
928 |
+
)
|
929 |
+
left_image_token_global = left_image_token_global.permute(2, 0, 1)
|
930 |
+
|
931 |
+
# Right view processing
|
932 |
+
right_image_token, right_image_token_global = self.rgb_patch_embed(
|
933 |
+
right_image
|
934 |
+
)
|
935 |
+
if self.use_view_embed:
|
936 |
+
right_image_token = (
|
937 |
+
right_image_token
|
938 |
+
+ self.view_embed[:, :, 2:3, :]
|
939 |
+
+ self.position_encoding(right_image_token)
|
940 |
+
)
|
941 |
+
else:
|
942 |
+
right_image_token = right_image_token + self.position_encoding(
|
943 |
+
right_image_token
|
944 |
+
)
|
945 |
+
right_image_token = right_image_token.flatten(2).permute(2, 0, 1)
|
946 |
+
right_image_token_global = (
|
947 |
+
right_image_token_global
|
948 |
+
+ self.view_embed[:, :, 2, :]
|
949 |
+
+ self.global_embed[:, :, 2:3]
|
950 |
+
)
|
951 |
+
right_image_token_global = right_image_token_global.permute(2, 0, 1)
|
952 |
+
|
953 |
+
features.extend(
|
954 |
+
[
|
955 |
+
left_image_token,
|
956 |
+
left_image_token_global,
|
957 |
+
right_image_token,
|
958 |
+
right_image_token_global,
|
959 |
+
]
|
960 |
+
)
|
961 |
+
|
962 |
+
if self.with_center_sensor:
|
963 |
+
# Front center view processing
|
964 |
+
(
|
965 |
+
front_center_image_token,
|
966 |
+
front_center_image_token_global,
|
967 |
+
) = self.rgb_patch_embed(front_center_image)
|
968 |
+
if self.use_view_embed:
|
969 |
+
front_center_image_token = (
|
970 |
+
front_center_image_token
|
971 |
+
+ self.view_embed[:, :, 3:4, :]
|
972 |
+
+ self.position_encoding(front_center_image_token)
|
973 |
+
)
|
974 |
+
else:
|
975 |
+
front_center_image_token = (
|
976 |
+
front_center_image_token
|
977 |
+
+ self.position_encoding(front_center_image_token)
|
978 |
+
)
|
979 |
+
|
980 |
+
front_center_image_token = front_center_image_token.flatten(2).permute(
|
981 |
+
2, 0, 1
|
982 |
+
)
|
983 |
+
front_center_image_token_global = (
|
984 |
+
front_center_image_token_global
|
985 |
+
+ self.view_embed[:, :, 3, :]
|
986 |
+
+ self.global_embed[:, :, 3:4]
|
987 |
+
)
|
988 |
+
front_center_image_token_global = front_center_image_token_global.permute(
|
989 |
+
2, 0, 1
|
990 |
+
)
|
991 |
+
features.extend([front_center_image_token, front_center_image_token_global])
|
992 |
+
|
993 |
+
if self.with_lidar:
|
994 |
+
lidar_token, lidar_token_global = self.lidar_patch_embed(lidar)
|
995 |
+
if self.use_view_embed:
|
996 |
+
lidar_token = (
|
997 |
+
lidar_token
|
998 |
+
+ self.view_embed[:, :, 4:5, :]
|
999 |
+
+ self.position_encoding(lidar_token)
|
1000 |
+
)
|
1001 |
+
else:
|
1002 |
+
lidar_token = lidar_token + self.position_encoding(lidar_token)
|
1003 |
+
lidar_token = lidar_token.flatten(2).permute(2, 0, 1)
|
1004 |
+
lidar_token_global = (
|
1005 |
+
lidar_token_global
|
1006 |
+
+ self.view_embed[:, :, 4, :]
|
1007 |
+
+ self.global_embed[:, :, 4:5]
|
1008 |
+
)
|
1009 |
+
lidar_token_global = lidar_token_global.permute(2, 0, 1)
|
1010 |
+
features.extend([lidar_token, lidar_token_global])
|
1011 |
+
|
1012 |
+
features = torch.cat(features, 0)
|
1013 |
+
return features
|
1014 |
+
|
1015 |
+
def forward(self, x):
|
1016 |
+
front_image = x["rgb"]
|
1017 |
+
left_image = x["rgb_left"]
|
1018 |
+
right_image = x["rgb_right"]
|
1019 |
+
front_center_image = x["rgb_center"]
|
1020 |
+
measurements = x["measurements"]
|
1021 |
+
target_point = x["target_point"]
|
1022 |
+
lidar = x["lidar"]
|
1023 |
+
|
1024 |
+
if self.direct_concat:
|
1025 |
+
img_size = front_image.shape[-1]
|
1026 |
+
left_image = torch.nn.functional.interpolate(
|
1027 |
+
left_image, size=(img_size, img_size)
|
1028 |
+
)
|
1029 |
+
right_image = torch.nn.functional.interpolate(
|
1030 |
+
right_image, size=(img_size, img_size)
|
1031 |
+
)
|
1032 |
+
front_center_image = torch.nn.functional.interpolate(
|
1033 |
+
front_center_image, size=(img_size, img_size)
|
1034 |
+
)
|
1035 |
+
front_image = torch.cat(
|
1036 |
+
[front_image, left_image, right_image, front_center_image], dim=1
|
1037 |
+
)
|
1038 |
+
features = self.forward_features(
|
1039 |
+
front_image,
|
1040 |
+
left_image,
|
1041 |
+
right_image,
|
1042 |
+
front_center_image,
|
1043 |
+
lidar,
|
1044 |
+
measurements,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
bs = front_image.shape[0]
|
1048 |
+
|
1049 |
+
if self.end2end:
|
1050 |
+
tgt = self.query_pos_embed.repeat(bs, 1, 1)
|
1051 |
+
else:
|
1052 |
+
tgt = self.position_encoding(
|
1053 |
+
torch.ones((bs, 1, 20, 20), device=x["rgb"].device)
|
1054 |
+
)
|
1055 |
+
tgt = tgt.flatten(2)
|
1056 |
+
tgt = torch.cat([tgt, self.query_pos_embed.repeat(bs, 1, 1)], 2)
|
1057 |
+
tgt = tgt.permute(2, 0, 1)
|
1058 |
+
|
1059 |
+
memory = self.encoder(features, mask=self.attn_mask)
|
1060 |
+
hs = self.decoder(self.query_embed.repeat(1, bs, 1), memory, query_pos=tgt)[0]
|
1061 |
+
|
1062 |
+
hs = hs.permute(1, 0, 2) # Batchsize , N, C
|
1063 |
+
if self.end2end:
|
1064 |
+
waypoints = self.waypoints_generator(hs, target_point)
|
1065 |
+
return waypoints
|
1066 |
+
|
1067 |
+
if self.waypoints_pred_head != "heatmap":
|
1068 |
+
traffic_feature = hs[:, :400]
|
1069 |
+
is_junction_feature = hs[:, 400]
|
1070 |
+
traffic_light_state_feature = hs[:, 400]
|
1071 |
+
stop_sign_feature = hs[:, 400]
|
1072 |
+
waypoints_feature = hs[:, 401:411]
|
1073 |
+
else:
|
1074 |
+
traffic_feature = hs[:, :400]
|
1075 |
+
is_junction_feature = hs[:, 400]
|
1076 |
+
traffic_light_state_feature = hs[:, 400]
|
1077 |
+
stop_sign_feature = hs[:, 400]
|
1078 |
+
waypoints_feature = hs[:, 401:405]
|
1079 |
+
|
1080 |
+
if self.waypoints_pred_head == "heatmap":
|
1081 |
+
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
1082 |
+
elif self.waypoints_pred_head == "gru":
|
1083 |
+
waypoints = self.waypoints_generator(waypoints_feature, target_point)
|
1084 |
+
elif self.waypoints_pred_head == "gru-command":
|
1085 |
+
waypoints = self.waypoints_generator(waypoints_feature, target_point, measurements)
|
1086 |
+
elif self.waypoints_pred_head == "linear":
|
1087 |
+
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
1088 |
+
elif self.waypoints_pred_head == "linear-sum":
|
1089 |
+
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
1090 |
+
|
1091 |
+
is_junction = self.junction_pred_head(is_junction_feature)
|
1092 |
+
traffic_light_state = self.traffic_light_pred_head(traffic_light_state_feature)
|
1093 |
+
stop_sign = self.stop_sign_head(stop_sign_feature)
|
1094 |
+
|
1095 |
+
velocity = measurements[:, 6:7].unsqueeze(-1)
|
1096 |
+
velocity = velocity.repeat(1, 400, 32)
|
1097 |
+
traffic_feature_with_vel = torch.cat([traffic_feature, velocity], dim=2)
|
1098 |
+
traffic = self.traffic_pred_head(traffic_feature_with_vel)
|
1099 |
+
return traffic, waypoints, is_junction, traffic_light_state, stop_sign, traffic_feature
|
1100 |
+
def load_pretrained(self, model_path, strict=False):
|
1101 |
+
"""
|
1102 |
+
تحميل الأ��زان المدربة مسبقاً - نسخة محسنة
|
1103 |
+
|
1104 |
+
Args:
|
1105 |
+
model_path (str): مسار ملف الأوزان
|
1106 |
+
strict (bool): إذا كان True، يتطلب تطابق تام للمفاتيح
|
1107 |
+
"""
|
1108 |
+
if not model_path or not Path(model_path).exists():
|
1109 |
+
logging.warning(f"ملف الأوزان غير موجود: {model_path}")
|
1110 |
+
logging.info("سيتم استخدام أوزان عشوائية")
|
1111 |
+
return False
|
1112 |
+
|
1113 |
+
try:
|
1114 |
+
logging.info(f"محاولة تحميل الأوزان من: {model_path}")
|
1115 |
+
|
1116 |
+
# تحميل الملف مع معالجة أنواع مختلفة من ملفات الحفظ
|
1117 |
+
checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
|
1118 |
+
|
1119 |
+
# استخراج state_dict من أنواع مختلفة من ملفات الحفظ
|
1120 |
+
if isinstance(checkpoint, dict):
|
1121 |
+
if 'model_state_dict' in checkpoint:
|
1122 |
+
state_dict = checkpoint['model_state_dict']
|
1123 |
+
logging.info("تم العثور على 'model_state_dict' في الملف")
|
1124 |
+
elif 'state_dict' in checkpoint:
|
1125 |
+
state_dict = checkpoint['state_dict']
|
1126 |
+
logging.info("تم العثور على 'state_dict' في الملف")
|
1127 |
+
elif 'model' in checkpoint:
|
1128 |
+
state_dict = checkpoint['model']
|
1129 |
+
logging.info("تم العثور على 'model' في الملف")
|
1130 |
+
else:
|
1131 |
+
state_dict = checkpoint
|
1132 |
+
logging.info("استخدام الملف كـ state_dict مباشرة")
|
1133 |
+
else:
|
1134 |
+
state_dict = checkpoint
|
1135 |
+
logging.info("استخدام الملف كـ state_dict مباشرة")
|
1136 |
+
|
1137 |
+
# تنظيف أسماء المفاتيح (إزالة 'module.' إذا كانت موجودة)
|
1138 |
+
clean_state_dict = OrderedDict()
|
1139 |
+
for k, v in state_dict.items():
|
1140 |
+
# إزالة 'module.' من بداية اسم المفتاح إذا كان موجوداً
|
1141 |
+
clean_key = k[7:] if k.startswith('module.') else k
|
1142 |
+
clean_state_dict[clean_key] = v
|
1143 |
+
|
1144 |
+
# تحميل الأوزان
|
1145 |
+
missing_keys, unexpected_keys = self.load_state_dict(clean_state_dict, strict=strict)
|
1146 |
+
|
1147 |
+
# تقرير حالة التحميل
|
1148 |
+
if missing_keys:
|
1149 |
+
logging.warning(f"مفاتيح مفقودة ({len(missing_keys)}): {missing_keys[:5]}..." if len(missing_keys) > 5 else f"مفاتيح مفقودة: {missing_keys}")
|
1150 |
+
|
1151 |
+
if unexpected_keys:
|
1152 |
+
logging.warning(f"مفاتيح غير متوقعة ({len(unexpected_keys)}): {unexpected_keys[:5]}..." if len(unexpected_keys) > 5 else f"مفاتيح غير متوقعة: {unexpected_keys}")
|
1153 |
+
|
1154 |
+
if not missing_keys and not unexpected_keys:
|
1155 |
+
logging.info("✅ تم تحميل جميع الأوزان بنجاح تام")
|
1156 |
+
elif not strict:
|
1157 |
+
logging.info("✅ تم تحميل الأوزان بنجاح (مع تجاهل عدم التطابق)")
|
1158 |
+
|
1159 |
+
return True
|
1160 |
+
|
1161 |
+
except Exception as e:
|
1162 |
+
logging.error(f"❌ خطأ في تحميل الأوزان: {str(e)}")
|
1163 |
+
logging.info("سيتم استخدام أوزان عشوائية")
|
1164 |
+
return False
|
1165 |
+
|
1166 |
+
|
1167 |
+
# ============================================================================
|
1168 |
+
# دوال مساعدة لتحميل النموذج
|
1169 |
+
# ============================================================================
|
1170 |
+
|
1171 |
+
def load_and_prepare_model(config, device):
|
1172 |
+
"""
|
1173 |
+
يقوم بإنشاء النموذج وتحميل الأوزان المدربة مسبقًا.
|
1174 |
+
|
1175 |
+
Args:
|
1176 |
+
config (dict): إعدادات النموذج والمسارات
|
1177 |
+
device (torch.device): الجهاز المستهدف (CPU/GPU)
|
1178 |
+
|
1179 |
+
Returns:
|
1180 |
+
InterfuserModel: النموذج المحمل
|
1181 |
+
"""
|
1182 |
+
try:
|
1183 |
+
# إنشاء النموذج
|
1184 |
+
model = InterfuserModel(**config.get('model_params', {})).to(device)
|
1185 |
+
logging.info(f"تم إنشاء النموذج على الجهاز: {device}")
|
1186 |
+
|
1187 |
+
# تحميل الأوزان إذا كان المسار محدد
|
1188 |
+
checkpoint_path = config.get('paths', {}).get('pretrained_weights')
|
1189 |
+
if checkpoint_path:
|
1190 |
+
success = model.load_pretrained(checkpoint_path, strict=False)
|
1191 |
+
if success:
|
1192 |
+
logging.info("✅ تم تحميل النموذج والأوزان بنجاح")
|
1193 |
+
else:
|
1194 |
+
logging.warning("⚠️ تم إنشاء النموذج بأوزان عشوائية")
|
1195 |
+
else:
|
1196 |
+
logging.info("لم يتم تحديد مسار الأوزان، سيتم استخدام أوزان عشوائية")
|
1197 |
+
|
1198 |
+
# وضع النموذج في وضع التقييم
|
1199 |
+
model.eval()
|
1200 |
+
|
1201 |
+
return model
|
1202 |
+
|
1203 |
+
except Exception as e:
|
1204 |
+
logging.error(f"خطأ في إنشاء النموذج: {str(e)}")
|
1205 |
+
raise
|
1206 |
+
|
1207 |
+
|
1208 |
+
def create_model_config(model_path="model/best_model.pth", **model_params):
|
1209 |
+
"""
|
1210 |
+
إنشاء إعدادات النموذج باستخدام الإعدادات الصحيحة من التدريب
|
1211 |
+
|
1212 |
+
Args:
|
1213 |
+
model_path (str): مسار ملف الأوزان
|
1214 |
+
**model_params: معاملات النموذج الإضافية
|
1215 |
+
|
1216 |
+
Returns:
|
1217 |
+
dict: إعدادات النموذج
|
1218 |
+
"""
|
1219 |
+
# الإعدادات الصحيحة من كونفيج التدريب الأصلي
|
1220 |
+
training_config_params = {
|
1221 |
+
"img_size": 224,
|
1222 |
+
"embed_dim": 256, # مهم: هذه القيمة من التدريب الأصلي
|
1223 |
+
"enc_depth": 6,
|
1224 |
+
"dec_depth": 6,
|
1225 |
+
"rgb_backbone_name": 'r50',
|
1226 |
+
"lidar_backbone_name": 'r18',
|
1227 |
+
"waypoints_pred_head": 'gru',
|
1228 |
+
"use_different_backbone": True,
|
1229 |
+
"with_lidar": False,
|
1230 |
+
"with_right_left_sensors": False,
|
1231 |
+
"with_center_sensor": False,
|
1232 |
+
|
1233 |
+
# إعدادات إضافية من الكونفيج الأصلي
|
1234 |
+
"multi_view_img_size": 112,
|
1235 |
+
"patch_size": 8,
|
1236 |
+
"in_chans": 3,
|
1237 |
+
"dim_feedforward": 2048,
|
1238 |
+
"normalize_before": False,
|
1239 |
+
"num_heads": 8,
|
1240 |
+
"dropout": 0.1,
|
1241 |
+
"end2end": False,
|
1242 |
+
"direct_concat": False,
|
1243 |
+
"separate_view_attention": False,
|
1244 |
+
"separate_all_attention": False,
|
1245 |
+
"freeze_num": -1,
|
1246 |
+
"traffic_pred_head_type": "det",
|
1247 |
+
"reverse_pos": True,
|
1248 |
+
"use_view_embed": False,
|
1249 |
+
"use_mmad_pretrain": None,
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
# دمج المعاملات المخصصة مع الإعدادات من التدريب
|
1253 |
+
training_config_params.update(model_params)
|
1254 |
+
|
1255 |
+
config = {
|
1256 |
+
'model_params': training_config_params,
|
1257 |
+
'paths': {
|
1258 |
+
'pretrained_weights': model_path
|
1259 |
+
},
|
1260 |
+
|
1261 |
+
# إضافة إعدادات الشبكة من التدريب
|
1262 |
+
'grid_conf': {
|
1263 |
+
'h': 20, 'w': 20,
|
1264 |
+
'x_res': 1.0, 'y_res': 1.0,
|
1265 |
+
'y_min': 0.0, 'y_max': 20.0,
|
1266 |
+
'x_min': -10.0, 'x_max': 10.0,
|
1267 |
+
},
|
1268 |
+
|
1269 |
+
# معلومات إضافية عن التدريب
|
1270 |
+
'training_info': {
|
1271 |
+
'original_project': 'Interfuser_Finetuning',
|
1272 |
+
'run_name': 'Finetune_Focus_on_Detection_v5',
|
1273 |
+
'focus': 'traffic_detection_and_iou',
|
1274 |
+
'backbone': 'ResNet50 + ResNet18',
|
1275 |
+
'trained_on': 'PDM_Lite_Carla'
|
1276 |
+
}
|
1277 |
+
}
|
1278 |
+
|
1279 |
+
return config
|
1280 |
+
|
1281 |
+
|
1282 |
+
def get_training_config():
|
1283 |
+
"""
|
1284 |
+
إرجاع إعدادات التدريب الأصلية للمرجع
|
1285 |
+
هذه الإعدادات توضح كيف تم تدريب النموذج
|
1286 |
+
"""
|
1287 |
+
return {
|
1288 |
+
'project_info': {
|
1289 |
+
'project': 'Interfuser_Finetuning',
|
1290 |
+
'entity': None,
|
1291 |
+
'run_name': 'Finetune_Focus_on_Detection_v5'
|
1292 |
+
},
|
1293 |
+
'training': {
|
1294 |
+
'epochs': 50,
|
1295 |
+
'batch_size': 8,
|
1296 |
+
'num_workers': 2,
|
1297 |
+
'learning_rate': 1e-4, # معدل تعلم منخفض للـ Fine-tuning
|
1298 |
+
'weight_decay': 1e-2,
|
1299 |
+
'patience': 15,
|
1300 |
+
'clip_grad_norm': 1.0,
|
1301 |
+
},
|
1302 |
+
'loss_weights': {
|
1303 |
+
'iou': 2.0, # أولوية قصوى لدقة الصناديق
|
1304 |
+
'traffic_map': 25.0, # تركيز عالي على اكتشاف الكائنات
|
1305 |
+
'waypoints': 1.0, # مرجع أساسي
|
1306 |
+
'junction': 0.25, # مهام متقنة بالفعل
|
1307 |
+
'traffic_light': 0.5,
|
1308 |
+
'stop_sign': 0.25,
|
1309 |
+
},
|
1310 |
+
'data_split': {
|
1311 |
+
'strategy': 'interleaved',
|
1312 |
+
'segment_length': 100,
|
1313 |
+
'validation_frequency': 10,
|
1314 |
+
},
|
1315 |
+
'transforms': {
|
1316 |
+
'use_data_augmentation': False, # معطل للتركيز على البيانات الأصلية
|
1317 |
+
}
|
1318 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# مكتبات الخادم الأساسية
|
2 |
+
fastapi==0.104.1
|
3 |
+
uvicorn[standard]==0.24.0
|
4 |
+
python-multipart==0.0.6
|
5 |
+
pydantic==2.4.2
|
6 |
+
|
7 |
+
# مكتبات التعلم العميق
|
8 |
+
torch==2.1.0 --extra-index-url https://download.pytorch.org/whl/cpu
|
9 |
+
torchvision==0.16.0 --extra-index-url https://download.pytorch.org/whl/cpu
|
10 |
+
|
11 |
+
# مكتبات معالجة البيانات
|
12 |
+
numpy==1.24.3
|
13 |
+
opencv-python-headless==4.8.1.78
|
14 |
+
Pillow==10.0.1
|
15 |
+
|
16 |
+
# مكتبات إضافية للنموذج المحسن
|
17 |
+
tqdm==4.66.1
|
18 |
+
pathlib2==2.3.7
|
19 |
+
|
20 |
+
# مكتبات اختيارية (يمكن تثبيتها حسب الحاجة)
|
21 |
+
# wandb==0.15.12 # للمراقبة والتتبع
|
22 |
+
# timm==0.9.7 # لنماذج الرؤية الحاسوبية
|
simulation_modules.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# simulation_modules.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import math
|
7 |
+
from collections import deque
|
8 |
+
from typing import List, Tuple, Dict, Any, Optional
|
9 |
+
|
10 |
+
# ================== Constants ==================
|
11 |
+
WAYPOINT_SCALE_FACTOR = 5.0
|
12 |
+
T1_FUTURE_TIME = 1.0
|
13 |
+
T2_FUTURE_TIME = 2.0
|
14 |
+
PIXELS_PER_METER = 8
|
15 |
+
MAX_DISTANCE = 32
|
16 |
+
IMG_SIZE = MAX_DISTANCE * PIXELS_PER_METER * 2
|
17 |
+
EGO_CAR_X = IMG_SIZE // 2
|
18 |
+
EGO_CAR_Y = IMG_SIZE - (4.0 * PIXELS_PER_METER)
|
19 |
+
|
20 |
+
COLORS = {
|
21 |
+
'vehicle': [255, 0, 0],
|
22 |
+
'pedestrian': [0, 255, 0],
|
23 |
+
'cyclist': [0, 0, 255],
|
24 |
+
'waypoint': [255, 255, 0],
|
25 |
+
'ego_car': [255, 255, 255]
|
26 |
+
}
|
27 |
+
|
28 |
+
# ================== PID Controller ==================
|
29 |
+
class PIDController:
|
30 |
+
def __init__(self, K_P=1.0, K_I=0.0, K_D=0.0, n=20):
|
31 |
+
self._K_P = K_P
|
32 |
+
self._K_I = K_I
|
33 |
+
self._K_D = K_D
|
34 |
+
self._window = deque([0 for _ in range(n)], maxlen=n)
|
35 |
+
|
36 |
+
def step(self, error):
|
37 |
+
self._window.append(error)
|
38 |
+
if len(self._window) >= 2:
|
39 |
+
integral = np.mean(self._window)
|
40 |
+
derivative = self._window[-1] - self._window[-2]
|
41 |
+
else:
|
42 |
+
integral = derivative = 0.0
|
43 |
+
return self._K_P * error + self._K_I * integral + self._K_D * derivative
|
44 |
+
|
45 |
+
# ================== Helper Functions ==================
|
46 |
+
def ensure_rgb(image):
|
47 |
+
if len(image.shape) == 2:
|
48 |
+
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
49 |
+
elif image.shape[2] == 1:
|
50 |
+
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
51 |
+
return image
|
52 |
+
|
53 |
+
def add_rect(img, loc, ori, box, value, color):
|
54 |
+
center_x = int(loc[0] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
|
55 |
+
center_y = int(loc[1] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
|
56 |
+
size_px = (int(box[0] * PIXELS_PER_METER), int(box[1] * PIXELS_PER_METER))
|
57 |
+
angle_deg = -np.degrees(math.atan2(ori[1], ori[0]))
|
58 |
+
box_points = cv2.boxPoints(((center_x, center_y), size_px, angle_deg))
|
59 |
+
box_points = np.int32(box_points)
|
60 |
+
adjusted_color = [int(c * value) for c in color]
|
61 |
+
cv2.fillConvexPoly(img, box_points, adjusted_color)
|
62 |
+
return img
|
63 |
+
|
64 |
+
def render(traffic_grid, t=0):
|
65 |
+
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
|
66 |
+
counts = {'vehicles': 0, 'pedestrians': 0, 'cyclists': 0}
|
67 |
+
|
68 |
+
if isinstance(traffic_grid, torch.Tensor):
|
69 |
+
traffic_grid = traffic_grid.cpu().numpy()
|
70 |
+
|
71 |
+
h, w, c = traffic_grid.shape
|
72 |
+
for y in range(h):
|
73 |
+
for x in range(w):
|
74 |
+
for ch in range(c):
|
75 |
+
if traffic_grid[y, x, ch] > 0.1:
|
76 |
+
world_x = (x / w - 0.5) * MAX_DISTANCE * 2
|
77 |
+
world_y = (y / h - 0.5) * MAX_DISTANCE * 2
|
78 |
+
|
79 |
+
if ch < 3:
|
80 |
+
color = COLORS['vehicle']
|
81 |
+
counts['vehicles'] += 1
|
82 |
+
box_size = [2.0, 4.0]
|
83 |
+
elif ch < 5:
|
84 |
+
color = COLORS['pedestrian']
|
85 |
+
counts['pedestrians'] += 1
|
86 |
+
box_size = [0.8, 0.8]
|
87 |
+
else:
|
88 |
+
color = COLORS['cyclist']
|
89 |
+
counts['cyclists'] += 1
|
90 |
+
box_size = [1.2, 2.0]
|
91 |
+
|
92 |
+
img = add_rect(img, [world_x, world_y], [1.0, 0.0],
|
93 |
+
box_size, traffic_grid[y, x, ch], color)
|
94 |
+
|
95 |
+
return img, counts
|
96 |
+
|
97 |
+
def render_waypoints(waypoints, scale_factor=WAYPOINT_SCALE_FACTOR):
|
98 |
+
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
|
99 |
+
|
100 |
+
if isinstance(waypoints, torch.Tensor):
|
101 |
+
waypoints = waypoints.cpu().numpy()
|
102 |
+
|
103 |
+
scaled_waypoints = waypoints * scale_factor
|
104 |
+
|
105 |
+
for i, wp in enumerate(scaled_waypoints):
|
106 |
+
px = int(wp[0] * PIXELS_PER_METER + IMG_SIZE // 2)
|
107 |
+
py = int(wp[1] * PIXELS_PER_METER + IMG_SIZE // 2)
|
108 |
+
|
109 |
+
if 0 <= px < IMG_SIZE and 0 <= py < IMG_SIZE:
|
110 |
+
radius = max(3, 8 - i)
|
111 |
+
cv2.circle(img, (px, py), radius, COLORS['waypoint'], -1)
|
112 |
+
|
113 |
+
if i > 0:
|
114 |
+
prev_px = int(scaled_waypoints[i-1][0] * PIXELS_PER_METER + IMG_SIZE // 2)
|
115 |
+
prev_py = int(scaled_waypoints[i-1][1] * PIXELS_PER_METER + IMG_SIZE // 2)
|
116 |
+
if 0 <= prev_px < IMG_SIZE and 0 <= prev_py < IMG_SIZE:
|
117 |
+
cv2.line(img, (prev_px, prev_py), (px, py), COLORS['waypoint'], 2)
|
118 |
+
|
119 |
+
return img
|
120 |
+
|
121 |
+
def render_self_car(img):
|
122 |
+
car_pos = [0, -4.0]
|
123 |
+
car_ori = [1.0, 0.0]
|
124 |
+
car_size = [2.0, 4.5]
|
125 |
+
return add_rect(img, car_pos, car_ori, car_size, 1.0, COLORS['ego_car'])
|
126 |
+
|
127 |
+
# ================== Tracker Classes ==================
|
128 |
+
class TrackedObject:
|
129 |
+
def __init__(self, obj_id: int):
|
130 |
+
self.id = obj_id
|
131 |
+
self.last_step = 0
|
132 |
+
self.last_pos = [0.0, 0.0]
|
133 |
+
self.historical_pos = []
|
134 |
+
self.historical_steps = []
|
135 |
+
self.velocity = [0.0, 0.0]
|
136 |
+
self.confidence = 1.0
|
137 |
+
|
138 |
+
def update(self, step: int, obj_info: List[float]):
|
139 |
+
self.last_step = step
|
140 |
+
self.last_pos = obj_info[:2]
|
141 |
+
self.historical_pos.append(obj_info[:2])
|
142 |
+
self.historical_steps.append(step)
|
143 |
+
|
144 |
+
if len(self.historical_pos) >= 2:
|
145 |
+
dt = self.historical_steps[-1] - self.historical_steps[-2]
|
146 |
+
if dt > 0:
|
147 |
+
dx = self.historical_pos[-1][0] - self.historical_pos[-2][0]
|
148 |
+
dy = self.historical_pos[-1][1] - self.historical_pos[-2][1]
|
149 |
+
self.velocity = [dx/dt, dy/dt]
|
150 |
+
|
151 |
+
def predict_position(self, future_time: float) -> List[float]:
|
152 |
+
predicted_x = self.last_pos[0] + self.velocity[0] * future_time
|
153 |
+
predicted_y = self.last_pos[1] + self.velocity[1] * future_time
|
154 |
+
return [predicted_x, predicted_y]
|
155 |
+
|
156 |
+
def is_alive(self, current_step: int, max_age: int = 5) -> bool:
|
157 |
+
return (current_step - self.last_step) <= max_age
|
158 |
+
|
159 |
+
class Tracker:
|
160 |
+
def __init__(self, frequency: int = 10):
|
161 |
+
self.tracks: List[TrackedObject] = []
|
162 |
+
self.frequency = frequency
|
163 |
+
self.next_id = 0
|
164 |
+
self.current_step = 0
|
165 |
+
|
166 |
+
def update_and_predict(self, detections: List[Dict], step: int) -> np.ndarray:
|
167 |
+
self.current_step = step
|
168 |
+
|
169 |
+
for detection in detections:
|
170 |
+
pos = detection.get('position', [0, 0])
|
171 |
+
feature = detection.get('feature', 0.5)
|
172 |
+
|
173 |
+
best_match = None
|
174 |
+
min_distance = float('inf')
|
175 |
+
|
176 |
+
for track in self.tracks:
|
177 |
+
if track.is_alive(step):
|
178 |
+
distance = np.linalg.norm(np.array(pos) - np.array(track.last_pos))
|
179 |
+
if distance < min_distance and distance < 2.0:
|
180 |
+
min_distance = distance
|
181 |
+
best_match = track
|
182 |
+
|
183 |
+
if best_match:
|
184 |
+
best_match.update(step, pos + [feature])
|
185 |
+
else:
|
186 |
+
new_track = TrackedObject(self.next_id)
|
187 |
+
new_track.update(step, pos + [feature])
|
188 |
+
self.tracks.append(new_track)
|
189 |
+
self.next_id += 1
|
190 |
+
|
191 |
+
self.tracks = [t for t in self.tracks if t.is_alive(step)]
|
192 |
+
return self._generate_prediction_grid()
|
193 |
+
|
194 |
+
def _generate_prediction_grid(self) -> np.ndarray:
|
195 |
+
grid = np.zeros((20, 20, 7), dtype=np.float32)
|
196 |
+
|
197 |
+
for track in self.tracks:
|
198 |
+
if track.is_alive(self.current_step):
|
199 |
+
current_pos = track.last_pos
|
200 |
+
future_pos_t1 = track.predict_position(T1_FUTURE_TIME)
|
201 |
+
future_pos_t2 = track.predict_position(T2_FUTURE_TIME)
|
202 |
+
|
203 |
+
for pos in [current_pos, future_pos_t1, future_pos_t2]:
|
204 |
+
grid_x = int((pos[0] / (MAX_DISTANCE * 2) + 0.5) * 20)
|
205 |
+
grid_y = int((pos[1] / (MAX_DISTANCE * 2) + 0.5) * 20)
|
206 |
+
|
207 |
+
if 0 <= grid_x < 20 and 0 <= grid_y < 20:
|
208 |
+
channel = 0
|
209 |
+
grid[grid_y, grid_x, channel] = max(grid[grid_y, grid_x, channel], track.confidence)
|
210 |
+
|
211 |
+
return grid
|
212 |
+
|
213 |
+
# ================== Controller Classes ==================
|
214 |
+
class ControllerConfig:
|
215 |
+
def __init__(self):
|
216 |
+
self.turn_KP = 1.0
|
217 |
+
self.turn_KI = 0.1
|
218 |
+
self.turn_KD = 0.1
|
219 |
+
self.turn_n = 20
|
220 |
+
|
221 |
+
self.speed_KP = 0.5
|
222 |
+
self.speed_KI = 0.05
|
223 |
+
self.speed_KD = 0.1
|
224 |
+
self.speed_n = 20
|
225 |
+
|
226 |
+
self.max_speed = 6.0
|
227 |
+
self.max_throttle = 0.75
|
228 |
+
self.clip_delta = 0.25
|
229 |
+
|
230 |
+
self.brake_speed = 0.4
|
231 |
+
self.brake_ratio = 1.1
|
232 |
+
|
233 |
+
class InterfuserController:
|
234 |
+
def __init__(self, config: ControllerConfig):
|
235 |
+
self.config = config
|
236 |
+
self.turn_controller = PIDController(config.turn_KP, config.turn_KI, config.turn_KD, config.turn_n)
|
237 |
+
self.speed_controller = PIDController(config.speed_KP, config.speed_KI, config.speed_KD, config.speed_n)
|
238 |
+
self.last_steer = 0.0
|
239 |
+
self.last_throttle = 0.0
|
240 |
+
self.target_speed = 3.0
|
241 |
+
|
242 |
+
def run_step(self, current_speed: float, waypoints: np.ndarray,
|
243 |
+
junction: float, traffic_light_state: float,
|
244 |
+
stop_sign: float, meta_data: Dict) -> Tuple[float, float, bool, str]:
|
245 |
+
|
246 |
+
if isinstance(waypoints, torch.Tensor):
|
247 |
+
waypoints = waypoints.cpu().numpy()
|
248 |
+
|
249 |
+
if len(waypoints) > 1:
|
250 |
+
dx = waypoints[1][0] - waypoints[0][0]
|
251 |
+
dy = waypoints[1][1] - waypoints[0][1]
|
252 |
+
target_yaw = math.atan2(dy, dx)
|
253 |
+
steer = self.turn_controller.step(target_yaw)
|
254 |
+
else:
|
255 |
+
steer = 0.0
|
256 |
+
|
257 |
+
steer = np.clip(steer, -1.0, 1.0)
|
258 |
+
|
259 |
+
target_speed = self.target_speed
|
260 |
+
if junction > 0.5:
|
261 |
+
target_speed *= 0.7
|
262 |
+
if abs(steer) > 0.3:
|
263 |
+
target_speed *= 0.8
|
264 |
+
|
265 |
+
speed_error = target_speed - current_speed
|
266 |
+
throttle = self.speed_controller.step(speed_error)
|
267 |
+
throttle = np.clip(throttle, 0.0, self.config.max_throttle)
|
268 |
+
|
269 |
+
brake = False
|
270 |
+
if traffic_light_state > 0.5 or stop_sign > 0.5 or current_speed > self.config.max_speed:
|
271 |
+
brake = True
|
272 |
+
throttle = 0.0
|
273 |
+
|
274 |
+
self.last_steer = steer
|
275 |
+
self.last_throttle = throttle
|
276 |
+
|
277 |
+
metadata = f"Speed:{current_speed:.1f} Target:{target_speed:.1f} Junction:{junction:.2f}"
|
278 |
+
|
279 |
+
return steer, throttle, brake, metadata
|
280 |
+
|
281 |
+
# ================== Display Interface ==================
|
282 |
+
class DisplayInterface:
|
283 |
+
def __init__(self, width: int = 1200, height: int = 600):
|
284 |
+
self._width = width
|
285 |
+
self._height = height
|
286 |
+
self.camera_width = width // 2
|
287 |
+
self.camera_height = height
|
288 |
+
self.map_width = width // 2
|
289 |
+
self.map_height = height // 3
|
290 |
+
|
291 |
+
def run_interface(self, data: Dict[str, Any]) -> np.ndarray:
|
292 |
+
dashboard = np.zeros((self._height, self._width, 3), dtype=np.uint8)
|
293 |
+
|
294 |
+
# Camera view
|
295 |
+
camera_view = data.get('camera_view')
|
296 |
+
if camera_view is not None:
|
297 |
+
camera_resized = cv2.resize(camera_view, (self.camera_width, self.camera_height))
|
298 |
+
dashboard[:, :self.camera_width] = camera_resized
|
299 |
+
|
300 |
+
# Maps
|
301 |
+
map_start_x = self.camera_width
|
302 |
+
|
303 |
+
map_t0 = data.get('map_t0')
|
304 |
+
if map_t0 is not None:
|
305 |
+
map_resized = cv2.resize(map_t0, (self.map_width, self.map_height))
|
306 |
+
dashboard[:self.map_height, map_start_x:] = map_resized
|
307 |
+
cv2.putText(dashboard, "Current (t=0)", (map_start_x + 10, 30),
|
308 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
309 |
+
|
310 |
+
map_t1 = data.get('map_t1')
|
311 |
+
if map_t1 is not None:
|
312 |
+
map_resized = cv2.resize(map_t1, (self.map_width, self.map_height))
|
313 |
+
y_start = self.map_height
|
314 |
+
dashboard[y_start:y_start + self.map_height, map_start_x:] = map_resized
|
315 |
+
cv2.putText(dashboard, f"Future (t={T1_FUTURE_TIME}s)",
|
316 |
+
(map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX,
|
317 |
+
0.7, (255, 255, 255), 2)
|
318 |
+
|
319 |
+
map_t2 = data.get('map_t2')
|
320 |
+
if map_t2 is not None:
|
321 |
+
map_resized = cv2.resize(map_t2, (self.map_width, self.map_height))
|
322 |
+
y_start = self.map_height * 2
|
323 |
+
dashboard[y_start:, map_start_x:] = map_resized
|
324 |
+
cv2.putText(dashboard, f"Future (t={T2_FUTURE_TIME}s)",
|
325 |
+
(map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX,
|
326 |
+
0.7, (255, 255, 255), 2)
|
327 |
+
|
328 |
+
# Text info
|
329 |
+
text_info = data.get('text_info', {})
|
330 |
+
y_offset = 50
|
331 |
+
for key, value in text_info.items():
|
332 |
+
cv2.putText(dashboard, value, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX,
|
333 |
+
0.6, (0, 255, 0), 2)
|
334 |
+
y_offset += 30
|
335 |
+
|
336 |
+
return dashboard
|