Spaces:
Sleeping
Sleeping
Adam
commited on
Commit
·
7b0dd2f
1
Parent(s):
d80d18d
Deploy Baseer Self-Driving API v1.0
Browse files- Dockerfile +41 -0
- LICENSE +21 -0
- app.py +419 -0
- app_config.yaml +17 -0
- health_check.py +127 -0
- model/README.md +29 -0
- model_definition.py +1318 -0
- requirements.txt +22 -0
- simulation_modules.py +336 -0
Dockerfile
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# Baseer Self-Driving API - Hugging Face Space
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
# إنشاء مستخدم غير root (متطلب Hugging Face)
|
| 7 |
+
RUN useradd -m -u 1000 user
|
| 8 |
+
USER user
|
| 9 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 10 |
+
|
| 11 |
+
# تعيين مجلد العمل
|
| 12 |
+
WORKDIR /app
|
| 13 |
+
|
| 14 |
+
# تثبيت متطلبات النظام كـ root
|
| 15 |
+
USER root
|
| 16 |
+
RUN apt-get update && apt-get install -y \
|
| 17 |
+
libglib2.0-0 \
|
| 18 |
+
libsm6 \
|
| 19 |
+
libxext6 \
|
| 20 |
+
libxrender-dev \
|
| 21 |
+
libgomp1 \
|
| 22 |
+
libgtk-3-0 \
|
| 23 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 24 |
+
|
| 25 |
+
# العودة لمستخدم user
|
| 26 |
+
USER user
|
| 27 |
+
|
| 28 |
+
# نسخ ملفات المتطلبات
|
| 29 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 30 |
+
|
| 31 |
+
# تثبيت المتطلبات
|
| 32 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 33 |
+
|
| 34 |
+
# نسخ كود التطبيق
|
| 35 |
+
COPY --chown=user . /app
|
| 36 |
+
|
| 37 |
+
# تعيين متغيرات البيئة
|
| 38 |
+
ENV PYTHONPATH=/app
|
| 39 |
+
|
| 40 |
+
# تشغيل التطبيق على المنفذ 7860 (متطلب Hugging Face)
|
| 41 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024 Baseer Team
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
app.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - InterFuser Self-Driving API Server
|
| 2 |
+
|
| 3 |
+
import uuid
|
| 4 |
+
import base64
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
from fastapi import FastAPI, HTTPException
|
| 9 |
+
from pydantic import BaseModel
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from typing import List, Dict, Any, Optional
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
# استيراد من ملفاتنا المحلية
|
| 15 |
+
from model_definition import InterfuserModel, load_and_prepare_model, create_model_config
|
| 16 |
+
from simulation_modules import (
|
| 17 |
+
InterfuserController, ControllerConfig, Tracker, DisplayInterface,
|
| 18 |
+
render, render_waypoints, render_self_car, WAYPOINT_SCALE_FACTOR,
|
| 19 |
+
T1_FUTURE_TIME, T2_FUTURE_TIME
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# إعداد التسجيل
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# ================== إعدادات عامة وتحميل النموذج ==================
|
| 27 |
+
app = FastAPI(
|
| 28 |
+
title="Baseer Self-Driving API",
|
| 29 |
+
description="API للقيادة الذاتية باستخدام نموذج InterFuser",
|
| 30 |
+
version="1.0.0"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
device = torch.device("cpu")
|
| 34 |
+
logger.info(f"Using device: {device}")
|
| 35 |
+
|
| 36 |
+
# تحميل النموذج باستخدام الدالة المحسنة
|
| 37 |
+
try:
|
| 38 |
+
# إنشاء إعدادات النموذج باستخدام الإعدادات الصحيحة من التدريب
|
| 39 |
+
model_config = create_model_config(
|
| 40 |
+
model_path="model/best_model.pth"
|
| 41 |
+
# الإعدادات الصحيحة من التدريب ستطبق تلقائياً:
|
| 42 |
+
# embed_dim=256, rgb_backbone_name='r50', waypoints_pred_head='gru'
|
| 43 |
+
# with_lidar=False, with_right_left_sensors=False, with_center_sensor=False
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# تحميل النموذج مع الأوزان
|
| 47 |
+
model = load_and_prepare_model(model_config, device)
|
| 48 |
+
logger.info("✅ تم تحميل النموذج بنجاح")
|
| 49 |
+
|
| 50 |
+
except Exception as e:
|
| 51 |
+
logger.error(f"❌ خطأ في تحميل النموذج: {e}")
|
| 52 |
+
logger.info("🔄 محاولة إنشاء نموذج بأوزان عشوائية...")
|
| 53 |
+
try:
|
| 54 |
+
model = InterfuserModel()
|
| 55 |
+
model.to(device)
|
| 56 |
+
model.eval()
|
| 57 |
+
logger.warning("⚠️ تم إنشاء النموذج بأوزان عشوائية")
|
| 58 |
+
except Exception as e2:
|
| 59 |
+
logger.error(f"❌ فشل في إنشاء النموذج: {e2}")
|
| 60 |
+
model = None
|
| 61 |
+
|
| 62 |
+
# تهيئة واجهة العرض
|
| 63 |
+
display = DisplayInterface()
|
| 64 |
+
|
| 65 |
+
# قاموس لتخزين جلسات المستخدمين
|
| 66 |
+
SESSIONS: Dict[str, Dict] = {}
|
| 67 |
+
|
| 68 |
+
# ================== هياكل بيانات Pydantic ==================
|
| 69 |
+
class Measurements(BaseModel):
|
| 70 |
+
pos: List[float] = [0.0, 0.0] # [x, y] position
|
| 71 |
+
theta: float = 0.0 # orientation angle
|
| 72 |
+
speed: float = 0.0 # current speed
|
| 73 |
+
steer: float = 0.0 # current steering
|
| 74 |
+
throttle: float = 0.0 # current throttle
|
| 75 |
+
brake: bool = False # brake status
|
| 76 |
+
command: int = 4 # driving command (4 = FollowLane)
|
| 77 |
+
target_point: List[float] = [0.0, 0.0] # target point [x, y]
|
| 78 |
+
|
| 79 |
+
class ModelOutputs(BaseModel):
|
| 80 |
+
traffic: List[List[List[float]]] # 20x20x7 grid
|
| 81 |
+
waypoints: List[List[float]] # Nx2 waypoints
|
| 82 |
+
is_junction: float
|
| 83 |
+
traffic_light_state: float
|
| 84 |
+
stop_sign: float
|
| 85 |
+
|
| 86 |
+
class ControlCommands(BaseModel):
|
| 87 |
+
steer: float
|
| 88 |
+
throttle: float
|
| 89 |
+
brake: bool
|
| 90 |
+
|
| 91 |
+
class RunStepInput(BaseModel):
|
| 92 |
+
session_id: str
|
| 93 |
+
image_b64: str
|
| 94 |
+
measurements: Measurements
|
| 95 |
+
|
| 96 |
+
class RunStepOutput(BaseModel):
|
| 97 |
+
model_outputs: ModelOutputs
|
| 98 |
+
control_commands: ControlCommands
|
| 99 |
+
dashboard_image_b64: str
|
| 100 |
+
|
| 101 |
+
class SessionResponse(BaseModel):
|
| 102 |
+
session_id: str
|
| 103 |
+
message: str
|
| 104 |
+
|
| 105 |
+
# ================== دوال المساعدة ==================
|
| 106 |
+
def get_image_transform():
|
| 107 |
+
"""إنشاء تحويلات الصورة كما في PDMDataset"""
|
| 108 |
+
return transforms.Compose([
|
| 109 |
+
transforms.ToTensor(),
|
| 110 |
+
transforms.Resize((224, 224), antialias=True),
|
| 111 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 112 |
+
])
|
| 113 |
+
|
| 114 |
+
# إنشاء كائن التحويل مرة واحدة
|
| 115 |
+
image_transform = get_image_transform()
|
| 116 |
+
|
| 117 |
+
def preprocess_input(frame_rgb: np.ndarray, measurements: Measurements, device: torch.device) -> Dict[str, torch.Tensor]:
|
| 118 |
+
"""
|
| 119 |
+
تحاكي ما يفعله PDMDataset.__getitem__ لإنشاء دفعة (batch) واحدة.
|
| 120 |
+
"""
|
| 121 |
+
# 1. معالجة الصورة الرئيسية
|
| 122 |
+
from PIL import Image
|
| 123 |
+
if isinstance(frame_rgb, np.ndarray):
|
| 124 |
+
frame_rgb = Image.fromarray(frame_rgb)
|
| 125 |
+
|
| 126 |
+
image_tensor = image_transform(frame_rgb).unsqueeze(0).to(device) # إضافة بُعد الدفعة
|
| 127 |
+
|
| 128 |
+
# 2. إنشاء مدخلات الكاميرات الأخرى عن طريق الاستنساخ
|
| 129 |
+
batch = {
|
| 130 |
+
'rgb': image_tensor,
|
| 131 |
+
'rgb_left': image_tensor.clone(),
|
| 132 |
+
'rgb_right': image_tensor.clone(),
|
| 133 |
+
'rgb_center': image_tensor.clone(),
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
# 3. إنشاء مدخل ليدار وهمي (أصفار)
|
| 137 |
+
batch['lidar'] = torch.zeros(1, 3, 224, 224, dtype=torch.float32).to(device)
|
| 138 |
+
|
| 139 |
+
# 4. تجميع القياسات بنفس ترتيب PDMDataset
|
| 140 |
+
m = measurements
|
| 141 |
+
measurements_tensor = torch.tensor([[
|
| 142 |
+
m.pos[0], m.pos[1], m.theta,
|
| 143 |
+
m.steer, m.throttle, float(m.brake),
|
| 144 |
+
m.speed, float(m.command)
|
| 145 |
+
]], dtype=torch.float32).to(device)
|
| 146 |
+
batch['measurements'] = measurements_tensor
|
| 147 |
+
|
| 148 |
+
# 5. إنشاء نقطة هدف
|
| 149 |
+
batch['target_point'] = torch.tensor([m.target_point], dtype=torch.float32).to(device)
|
| 150 |
+
|
| 151 |
+
# لا نحتاج إلى قيم ground truth (gt_*) أثناء التنبؤ
|
| 152 |
+
return batch
|
| 153 |
+
|
| 154 |
+
def decode_base64_image(image_b64: str) -> np.ndarray:
|
| 155 |
+
"""
|
| 156 |
+
فك تشفير صورة Base64
|
| 157 |
+
"""
|
| 158 |
+
try:
|
| 159 |
+
image_bytes = base64.b64decode(image_b64)
|
| 160 |
+
nparr = np.frombuffer(image_bytes, np.uint8)
|
| 161 |
+
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 162 |
+
return image
|
| 163 |
+
except Exception as e:
|
| 164 |
+
raise HTTPException(status_code=400, detail=f"Invalid image format: {str(e)}")
|
| 165 |
+
|
| 166 |
+
def encode_image_to_base64(image: np.ndarray) -> str:
|
| 167 |
+
"""
|
| 168 |
+
تشفير صورة إلى Base64
|
| 169 |
+
"""
|
| 170 |
+
_, buffer = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
| 171 |
+
return base64.b64encode(buffer).decode('utf-8')
|
| 172 |
+
|
| 173 |
+
# ================== نقاط نهاية الـ API ==================
|
| 174 |
+
@app.get("/")
|
| 175 |
+
async def root():
|
| 176 |
+
"""
|
| 177 |
+
نقطة البداية للـ API
|
| 178 |
+
"""
|
| 179 |
+
return {
|
| 180 |
+
"message": "InterFuser Self-Driving API",
|
| 181 |
+
"version": "1.0.0",
|
| 182 |
+
"status": "running",
|
| 183 |
+
"active_sessions": len(SESSIONS)
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
@app.post("/start_session", response_model=SessionResponse)
|
| 187 |
+
async def start_session():
|
| 188 |
+
"""
|
| 189 |
+
بدء جلسة جديدة للمحاكاة
|
| 190 |
+
"""
|
| 191 |
+
session_id = str(uuid.uuid4())
|
| 192 |
+
|
| 193 |
+
# إنشاء جلسة جديدة
|
| 194 |
+
SESSIONS[session_id] = {
|
| 195 |
+
'tracker': Tracker(frequency=10),
|
| 196 |
+
'controller': InterfuserController(ControllerConfig()),
|
| 197 |
+
'frame_num': 0,
|
| 198 |
+
'created_at': np.datetime64('now'),
|
| 199 |
+
'last_activity': np.datetime64('now')
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
logger.info(f"New session created: {session_id}")
|
| 203 |
+
|
| 204 |
+
return SessionResponse(
|
| 205 |
+
session_id=session_id,
|
| 206 |
+
message="Session started successfully"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
@app.post("/run_step", response_model=RunStepOutput)
|
| 210 |
+
async def run_step(data: RunStepInput):
|
| 211 |
+
"""
|
| 212 |
+
تنفيذ خطوة محاكاة كاملة
|
| 213 |
+
"""
|
| 214 |
+
# التحقق من وجود الجلسة
|
| 215 |
+
if data.session_id not in SESSIONS:
|
| 216 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
| 217 |
+
|
| 218 |
+
session = SESSIONS[data.session_id]
|
| 219 |
+
tracker = session['tracker']
|
| 220 |
+
controller = session['controller']
|
| 221 |
+
|
| 222 |
+
# تحديث وقت النشاط
|
| 223 |
+
session['last_activity'] = np.datetime64('now')
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
# 1. فك تشفير الصورة
|
| 227 |
+
frame_bgr = decode_base64_image(data.image_b64)
|
| 228 |
+
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 229 |
+
|
| 230 |
+
# 2. معالجة المدخلات
|
| 231 |
+
inputs = preprocess_input(frame_rgb, data.measurements, device)
|
| 232 |
+
|
| 233 |
+
# 3. تشغيل النموذج
|
| 234 |
+
if model is None:
|
| 235 |
+
raise HTTPException(status_code=500, detail="Model not loaded")
|
| 236 |
+
|
| 237 |
+
with torch.no_grad():
|
| 238 |
+
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = model(inputs)
|
| 239 |
+
|
| 240 |
+
# 4. معالجة مخرجات النموذج
|
| 241 |
+
traffic_np = traffic.cpu().numpy()[0] # أخذ أول عنصر من الـ batch
|
| 242 |
+
waypoints_np = waypoints.cpu().numpy()[0]
|
| 243 |
+
is_junction_prob = torch.sigmoid(is_junction)[0, 1].item()
|
| 244 |
+
traffic_light_prob = torch.sigmoid(traffic_light)[0, 0].item()
|
| 245 |
+
stop_sign_prob = torch.sigmoid(stop_sign)[0, 1].item()
|
| 246 |
+
|
| 247 |
+
# 5. تحديث التتبع
|
| 248 |
+
# تحويل traffic grid إلى detections للتتبع
|
| 249 |
+
detections = []
|
| 250 |
+
h, w, c = traffic_np.shape
|
| 251 |
+
for y in range(h):
|
| 252 |
+
for x in range(w):
|
| 253 |
+
for ch in range(c):
|
| 254 |
+
if traffic_np[y, x, ch] > 0.2: # عتبة الكشف
|
| 255 |
+
world_x = (x / w - 0.5) * 64 # تحويل إلى إحداثيات العالم
|
| 256 |
+
world_y = (y / h - 0.5) * 64
|
| 257 |
+
detections.append({
|
| 258 |
+
'position': [world_x, world_y],
|
| 259 |
+
'feature': traffic_np[y, x, ch]
|
| 260 |
+
})
|
| 261 |
+
|
| 262 |
+
updated_traffic = tracker.update_and_predict(detections, session['frame_num'])
|
| 263 |
+
|
| 264 |
+
# 6. تشغيل المتحكم
|
| 265 |
+
steer, throttle, brake, metadata = controller.run_step(
|
| 266 |
+
current_speed=data.measurements.speed,
|
| 267 |
+
waypoints=waypoints_np,
|
| 268 |
+
junction=is_junction_prob,
|
| 269 |
+
traffic_light_state=traffic_light_prob,
|
| 270 |
+
stop_sign=stop_sign_prob,
|
| 271 |
+
meta_data={'frame': session['frame_num']}
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# 7. إنشاء خرائط العرض
|
| 275 |
+
surround_t0, counts_t0 = render(updated_traffic, t=0)
|
| 276 |
+
surround_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME)
|
| 277 |
+
surround_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME)
|
| 278 |
+
|
| 279 |
+
# إضافة المسار المقترح
|
| 280 |
+
wp_map = render_waypoints(waypoints_np)
|
| 281 |
+
map_t0 = cv2.add(surround_t0, wp_map)
|
| 282 |
+
|
| 283 |
+
# إضافة السيارة الذاتية
|
| 284 |
+
map_t0 = render_self_car(map_t0)
|
| 285 |
+
map_t1 = render_self_car(surround_t1)
|
| 286 |
+
map_t2 = render_self_car(surround_t2)
|
| 287 |
+
|
| 288 |
+
# 8. إنشاء لوحة العرض النهائية
|
| 289 |
+
interface_data = {
|
| 290 |
+
'camera_view': frame_bgr,
|
| 291 |
+
'map_t0': map_t0,
|
| 292 |
+
'map_t1': map_t1,
|
| 293 |
+
'map_t2': map_t2,
|
| 294 |
+
'text_info': {
|
| 295 |
+
'Frame': f"Frame: {session['frame_num']}",
|
| 296 |
+
'Control': f"Steer: {steer:.2f}, Throttle: {throttle:.2f}, Brake: {brake}",
|
| 297 |
+
'Speed': f"Speed: {data.measurements.speed:.1f} km/h",
|
| 298 |
+
'Junction': f"Junction: {is_junction_prob:.2f}",
|
| 299 |
+
'Traffic Light': f"Red Light: {traffic_light_prob:.2f}",
|
| 300 |
+
'Stop Sign': f"Stop Sign: {stop_sign_prob:.2f}",
|
| 301 |
+
'Metadata': metadata
|
| 302 |
+
},
|
| 303 |
+
'object_counts': {
|
| 304 |
+
't0': counts_t0,
|
| 305 |
+
't1': counts_t1,
|
| 306 |
+
't2': counts_t2
|
| 307 |
+
}
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
dashboard_image = display.run_interface(interface_data)
|
| 311 |
+
dashboard_b64 = encode_image_to_base64(dashboard_image)
|
| 312 |
+
|
| 313 |
+
# 9. تجميع المخرجات النهائية
|
| 314 |
+
response = RunStepOutput(
|
| 315 |
+
model_outputs=ModelOutputs(
|
| 316 |
+
traffic=traffic_np.tolist(),
|
| 317 |
+
waypoints=waypoints_np.tolist(),
|
| 318 |
+
is_junction=is_junction_prob,
|
| 319 |
+
traffic_light_state=traffic_light_prob,
|
| 320 |
+
stop_sign=stop_sign_prob
|
| 321 |
+
),
|
| 322 |
+
control_commands=ControlCommands(
|
| 323 |
+
steer=float(steer),
|
| 324 |
+
throttle=float(throttle),
|
| 325 |
+
brake=bool(brake)
|
| 326 |
+
),
|
| 327 |
+
dashboard_image_b64=dashboard_b64
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# تحديث رقم الإطار
|
| 331 |
+
session['frame_num'] += 1
|
| 332 |
+
|
| 333 |
+
logger.info(f"Step completed for session {data.session_id}, frame {session['frame_num']}")
|
| 334 |
+
|
| 335 |
+
return response
|
| 336 |
+
|
| 337 |
+
except Exception as e:
|
| 338 |
+
logger.error(f"Error in run_step: {str(e)}")
|
| 339 |
+
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
| 340 |
+
|
| 341 |
+
@app.post("/end_session", response_model=SessionResponse)
|
| 342 |
+
async def end_session(session_id: str):
|
| 343 |
+
"""
|
| 344 |
+
إنهاء جلسة المحاكاة
|
| 345 |
+
"""
|
| 346 |
+
if session_id not in SESSIONS:
|
| 347 |
+
raise HTTPException(status_code=404, detail="Session not found")
|
| 348 |
+
|
| 349 |
+
# حذف الجلسة
|
| 350 |
+
del SESSIONS[session_id]
|
| 351 |
+
|
| 352 |
+
logger.info(f"Session ended: {session_id}")
|
| 353 |
+
|
| 354 |
+
return SessionResponse(
|
| 355 |
+
session_id=session_id,
|
| 356 |
+
message="Session ended successfully"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
@app.get("/sessions")
|
| 360 |
+
async def list_sessions():
|
| 361 |
+
"""
|
| 362 |
+
عرض قائمة الجلسات النشطة
|
| 363 |
+
"""
|
| 364 |
+
active_sessions = []
|
| 365 |
+
current_time = np.datetime64('now')
|
| 366 |
+
|
| 367 |
+
for session_id, session_data in SESSIONS.items():
|
| 368 |
+
time_diff = current_time - session_data['last_activity']
|
| 369 |
+
active_sessions.append({
|
| 370 |
+
'session_id': session_id,
|
| 371 |
+
'frame_count': session_data['frame_num'],
|
| 372 |
+
'created_at': str(session_data['created_at']),
|
| 373 |
+
'last_activity': str(session_data['last_activity']),
|
| 374 |
+
'inactive_minutes': float(time_diff / np.timedelta64(1, 'm'))
|
| 375 |
+
})
|
| 376 |
+
|
| 377 |
+
return {
|
| 378 |
+
'total_sessions': len(active_sessions),
|
| 379 |
+
'sessions': active_sessions
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
@app.delete("/sessions/cleanup")
|
| 383 |
+
async def cleanup_inactive_sessions(max_inactive_minutes: int = 30):
|
| 384 |
+
"""
|
| 385 |
+
تنظيف الجلسات غير النشطة
|
| 386 |
+
"""
|
| 387 |
+
current_time = np.datetime64('now')
|
| 388 |
+
cleaned_sessions = []
|
| 389 |
+
|
| 390 |
+
for session_id in list(SESSIONS.keys()):
|
| 391 |
+
session = SESSIONS[session_id]
|
| 392 |
+
time_diff = current_time - session['last_activity']
|
| 393 |
+
inactive_minutes = float(time_diff / np.timedelta64(1, 'm'))
|
| 394 |
+
|
| 395 |
+
if inactive_minutes > max_inactive_minutes:
|
| 396 |
+
del SESSIONS[session_id]
|
| 397 |
+
cleaned_sessions.append(session_id)
|
| 398 |
+
|
| 399 |
+
logger.info(f"Cleaned up {len(cleaned_sessions)} inactive sessions")
|
| 400 |
+
|
| 401 |
+
return {
|
| 402 |
+
'message': f"Cleaned up {len(cleaned_sessions)} inactive sessions",
|
| 403 |
+
'cleaned_sessions': cleaned_sessions,
|
| 404 |
+
'remaining_sessions': len(SESSIONS)
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
# ================== معالج الأخطاء ==================
|
| 408 |
+
@app.exception_handler(Exception)
|
| 409 |
+
async def global_exception_handler(request, exc):
|
| 410 |
+
logger.error(f"Global exception: {str(exc)}")
|
| 411 |
+
return {
|
| 412 |
+
"error": "Internal server error",
|
| 413 |
+
"detail": str(exc)
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
# ================== تشغيل الخادم ==================
|
| 417 |
+
if __name__ == "__main__":
|
| 418 |
+
import uvicorn
|
| 419 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
app_config.yaml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
title: Baseer Self-Driving API
|
| 2 |
+
emoji: 🚗
|
| 3 |
+
colorFrom: blue
|
| 4 |
+
colorTo: green
|
| 5 |
+
sdk: docker
|
| 6 |
+
app_port: 7860
|
| 7 |
+
pinned: false
|
| 8 |
+
license: mit
|
| 9 |
+
short_description: API للقيادة الذاتية باستخدام نموذج Baseer InterFuser
|
| 10 |
+
tags:
|
| 11 |
+
- computer-vision
|
| 12 |
+
- autonomous-driving
|
| 13 |
+
- deep-learning
|
| 14 |
+
- fastapi
|
| 15 |
+
- pytorch
|
| 16 |
+
- interfuser
|
| 17 |
+
- graduation-project
|
health_check.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# health_check.py - فحص صحة النظام قبل النشر
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import torch
|
| 7 |
+
import logging
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
def check_python_version():
|
| 11 |
+
"""فحص إصدار Python"""
|
| 12 |
+
version = sys.version_info
|
| 13 |
+
if version.major == 3 and version.minor >= 9:
|
| 14 |
+
print(f"✅ Python {version.major}.{version.minor}.{version.micro}")
|
| 15 |
+
return True
|
| 16 |
+
else:
|
| 17 |
+
print(f"❌ Python {version.major}.{version.minor}.{version.micro} - يتطلب Python 3.9+")
|
| 18 |
+
return False
|
| 19 |
+
|
| 20 |
+
def check_pytorch():
|
| 21 |
+
"""فحص PyTorch"""
|
| 22 |
+
try:
|
| 23 |
+
print(f"✅ PyTorch {torch.__version__}")
|
| 24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
print(f"✅ Device: {device}")
|
| 26 |
+
return True
|
| 27 |
+
except Exception as e:
|
| 28 |
+
print(f"❌ PyTorch Error: {e}")
|
| 29 |
+
return False
|
| 30 |
+
|
| 31 |
+
def check_required_files():
|
| 32 |
+
"""فحص الملفات المطلوبة"""
|
| 33 |
+
required_files = [
|
| 34 |
+
"app.py",
|
| 35 |
+
"model_definition.py",
|
| 36 |
+
"simulation_modules.py",
|
| 37 |
+
"requirements.txt",
|
| 38 |
+
"Dockerfile",
|
| 39 |
+
"app_config.yaml",
|
| 40 |
+
"model/best_model.pth"
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
missing_files = []
|
| 44 |
+
for file in required_files:
|
| 45 |
+
if Path(file).exists():
|
| 46 |
+
size = Path(file).stat().st_size
|
| 47 |
+
print(f"✅ {file} ({size:,} bytes)")
|
| 48 |
+
else:
|
| 49 |
+
print(f"❌ {file} - مفقود")
|
| 50 |
+
missing_files.append(file)
|
| 51 |
+
|
| 52 |
+
return len(missing_files) == 0
|
| 53 |
+
|
| 54 |
+
def check_model_loading():
|
| 55 |
+
"""فحص تحميل النموذج"""
|
| 56 |
+
try:
|
| 57 |
+
from model_definition import InterfuserModel, create_model_config, load_and_prepare_model
|
| 58 |
+
|
| 59 |
+
# إنشاء إعدادات النموذج
|
| 60 |
+
config = create_model_config("model/best_model.pth")
|
| 61 |
+
print("✅ تم إنشاء إعدادات النموذج")
|
| 62 |
+
|
| 63 |
+
# تحميل النموذج
|
| 64 |
+
device = torch.device("cpu")
|
| 65 |
+
model = load_and_prepare_model(config, device)
|
| 66 |
+
print("✅ تم تحميل النموذج بنجاح")
|
| 67 |
+
|
| 68 |
+
return True
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"❌ خطأ في تحميل النموذج: {e}")
|
| 72 |
+
return False
|
| 73 |
+
|
| 74 |
+
def check_api_imports():
|
| 75 |
+
"""فحص استيراد مكونات الـ API"""
|
| 76 |
+
try:
|
| 77 |
+
from app import app
|
| 78 |
+
print("✅ تم استيراد FastAPI app")
|
| 79 |
+
|
| 80 |
+
from simulation_modules import DisplayInterface, InterfuserController
|
| 81 |
+
print("✅ تم استيراد وحدات المحاكاة")
|
| 82 |
+
|
| 83 |
+
return True
|
| 84 |
+
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"❌ خطأ في استيراد الـ API: {e}")
|
| 87 |
+
return False
|
| 88 |
+
|
| 89 |
+
def main():
|
| 90 |
+
"""الفحص الشامل للنظام"""
|
| 91 |
+
print("🔍 فحص صحة نظام Baseer Self-Driving API")
|
| 92 |
+
print("=" * 50)
|
| 93 |
+
|
| 94 |
+
checks = [
|
| 95 |
+
("Python Version", check_python_version),
|
| 96 |
+
("PyTorch", check_pytorch),
|
| 97 |
+
("Required Files", check_required_files),
|
| 98 |
+
("API Imports", check_api_imports),
|
| 99 |
+
("Model Loading", check_model_loading),
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
passed = 0
|
| 103 |
+
total = len(checks)
|
| 104 |
+
|
| 105 |
+
for name, check_func in checks:
|
| 106 |
+
print(f"\n🔍 {name}:")
|
| 107 |
+
try:
|
| 108 |
+
if check_func():
|
| 109 |
+
passed += 1
|
| 110 |
+
else:
|
| 111 |
+
print(f"❌ فشل في فحص {name}")
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"❌ خطأ في فحص {name}: {e}")
|
| 114 |
+
|
| 115 |
+
print("\n" + "=" * 50)
|
| 116 |
+
print(f"📊 النتيجة النهائية: {passed}/{total} فحوصات نجحت")
|
| 117 |
+
|
| 118 |
+
if passed == total:
|
| 119 |
+
print("🎉 النظام جاهز للنشر!")
|
| 120 |
+
return True
|
| 121 |
+
else:
|
| 122 |
+
print("⚠️ يجب إصلاح المشاكل قبل النشر")
|
| 123 |
+
return False
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
success = main()
|
| 127 |
+
sys.exit(0 if success else 1)
|
model/README.md
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# InterFuser Model Directory
|
| 2 |
+
|
| 3 |
+
## Required Files
|
| 4 |
+
|
| 5 |
+
Place your trained InterFuser model files in this directory:
|
| 6 |
+
|
| 7 |
+
1. **`interfuser_model.pth`** - The main model weights file
|
| 8 |
+
2. **`config.json`** (optional) - Model configuration file
|
| 9 |
+
|
| 10 |
+
## Model Format
|
| 11 |
+
|
| 12 |
+
The model should be a PyTorch state dict saved with:
|
| 13 |
+
```python
|
| 14 |
+
torch.save(model.state_dict(), 'interfuser_model.pth')
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
## Loading in Code
|
| 18 |
+
|
| 19 |
+
The model is loaded in `model_definition.py`:
|
| 20 |
+
```python
|
| 21 |
+
model = InterFuserModel()
|
| 22 |
+
model.load_state_dict(torch.load('model/interfuser_model.pth', map_location='cpu'))
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
## Note
|
| 26 |
+
|
| 27 |
+
- The current implementation uses a dummy model for testing
|
| 28 |
+
- Replace with your actual trained InterFuser weights
|
| 29 |
+
- Ensure the model architecture matches the one defined in `model_definition.py`
|
model_definition.py
ADDED
|
@@ -0,0 +1,1318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model_definition.py
|
| 2 |
+
# ============================================================================
|
| 3 |
+
# الاستيرادات الأساسية
|
| 4 |
+
# ============================================================================
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.optim as optim
|
| 9 |
+
from torch.optim import AdamW
|
| 10 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
| 11 |
+
from torch.utils.data import Dataset, DataLoader
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
from functools import partial
|
| 14 |
+
from typing import Optional, List
|
| 15 |
+
from torch import Tensor
|
| 16 |
+
|
| 17 |
+
# مكتبات إضافية
|
| 18 |
+
import os
|
| 19 |
+
import json
|
| 20 |
+
import logging
|
| 21 |
+
import math
|
| 22 |
+
import copy
|
| 23 |
+
from pathlib import Path
|
| 24 |
+
from collections import OrderedDict
|
| 25 |
+
|
| 26 |
+
# مكتبات معالجة البيانات
|
| 27 |
+
import numpy as np
|
| 28 |
+
import cv2
|
| 29 |
+
|
| 30 |
+
# مكتبات اختيارية (يمكن تعطيلها إذا لم تكن متوفرة)
|
| 31 |
+
try:
|
| 32 |
+
import wandb
|
| 33 |
+
WANDB_AVAILABLE = True
|
| 34 |
+
except ImportError:
|
| 35 |
+
WANDB_AVAILABLE = False
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
from tqdm import tqdm
|
| 39 |
+
except ImportError:
|
| 40 |
+
# إذا لم تكن tqdm متوفرة، استخدم دالة بديلة
|
| 41 |
+
def tqdm(iterable, *args, **kwargs):
|
| 42 |
+
return iterable
|
| 43 |
+
|
| 44 |
+
# ============================================================================
|
| 45 |
+
# دوال مساعدة
|
| 46 |
+
# ============================================================================
|
| 47 |
+
def to_2tuple(x):
|
| 48 |
+
"""تحويل قيمة إلى tuple من عنصرين"""
|
| 49 |
+
if isinstance(x, (list, tuple)):
|
| 50 |
+
return tuple(x)
|
| 51 |
+
return (x, x)
|
| 52 |
+
# ============================================================================
|
| 53 |
+
# ============================================================================
|
| 54 |
+
|
| 55 |
+
class HybridEmbed(nn.Module):
|
| 56 |
+
def __init__(
|
| 57 |
+
self,
|
| 58 |
+
backbone,
|
| 59 |
+
img_size=224,
|
| 60 |
+
patch_size=1,
|
| 61 |
+
feature_size=None,
|
| 62 |
+
in_chans=3,
|
| 63 |
+
embed_dim=768,
|
| 64 |
+
):
|
| 65 |
+
super().__init__()
|
| 66 |
+
assert isinstance(backbone, nn.Module)
|
| 67 |
+
img_size = to_2tuple(img_size)
|
| 68 |
+
patch_size = to_2tuple(patch_size)
|
| 69 |
+
self.img_size = img_size
|
| 70 |
+
self.patch_size = patch_size
|
| 71 |
+
self.backbone = backbone
|
| 72 |
+
if feature_size is None:
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
training = backbone.training
|
| 75 |
+
if training:
|
| 76 |
+
backbone.eval()
|
| 77 |
+
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
|
| 78 |
+
if isinstance(o, (list, tuple)):
|
| 79 |
+
o = o[-1] # last feature if backbone outputs list/tuple of features
|
| 80 |
+
feature_size = o.shape[-2:]
|
| 81 |
+
feature_dim = o.shape[1]
|
| 82 |
+
backbone.train(training)
|
| 83 |
+
else:
|
| 84 |
+
feature_size = to_2tuple(feature_size)
|
| 85 |
+
if hasattr(self.backbone, "feature_info"):
|
| 86 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
| 87 |
+
else:
|
| 88 |
+
feature_dim = self.backbone.num_features
|
| 89 |
+
|
| 90 |
+
self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=1, stride=1)
|
| 91 |
+
|
| 92 |
+
def forward(self, x):
|
| 93 |
+
x = self.backbone(x)
|
| 94 |
+
if isinstance(x, (list, tuple)):
|
| 95 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
| 96 |
+
x = self.proj(x)
|
| 97 |
+
global_x = torch.mean(x, [2, 3], keepdim=False)[:, :, None]
|
| 98 |
+
return x, global_x
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class PositionEmbeddingSine(nn.Module):
|
| 102 |
+
"""
|
| 103 |
+
This is a more standard version of the position embedding, very similar to the one
|
| 104 |
+
used by the Attention is all you need paper, generalized to work on images.
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def __init__(
|
| 108 |
+
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
|
| 109 |
+
):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.num_pos_feats = num_pos_feats
|
| 112 |
+
self.temperature = temperature
|
| 113 |
+
self.normalize = normalize
|
| 114 |
+
if scale is not None and normalize is False:
|
| 115 |
+
raise ValueError("normalize should be True if scale is passed")
|
| 116 |
+
if scale is None:
|
| 117 |
+
scale = 2 * math.pi
|
| 118 |
+
self.scale = scale
|
| 119 |
+
|
| 120 |
+
def forward(self, tensor):
|
| 121 |
+
x = tensor
|
| 122 |
+
bs, _, h, w = x.shape
|
| 123 |
+
not_mask = torch.ones((bs, h, w), device=x.device)
|
| 124 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
| 125 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
| 126 |
+
if self.normalize:
|
| 127 |
+
eps = 1e-6
|
| 128 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
| 129 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
| 130 |
+
|
| 131 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
| 132 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
| 133 |
+
|
| 134 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
| 135 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
| 136 |
+
pos_x = torch.stack(
|
| 137 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
| 138 |
+
).flatten(3)
|
| 139 |
+
pos_y = torch.stack(
|
| 140 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
| 141 |
+
).flatten(3)
|
| 142 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
| 143 |
+
return pos
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class TransformerEncoder(nn.Module):
|
| 147 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
| 148 |
+
super().__init__()
|
| 149 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
| 150 |
+
self.num_layers = num_layers
|
| 151 |
+
self.norm = norm
|
| 152 |
+
|
| 153 |
+
def forward(
|
| 154 |
+
self,
|
| 155 |
+
src,
|
| 156 |
+
mask: Optional[Tensor] = None,
|
| 157 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
| 158 |
+
pos: Optional[Tensor] = None,
|
| 159 |
+
):
|
| 160 |
+
output = src
|
| 161 |
+
|
| 162 |
+
for layer in self.layers:
|
| 163 |
+
output = layer(
|
| 164 |
+
output,
|
| 165 |
+
src_mask=mask,
|
| 166 |
+
src_key_padding_mask=src_key_padding_mask,
|
| 167 |
+
pos=pos,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
if self.norm is not None:
|
| 171 |
+
output = self.norm(output)
|
| 172 |
+
|
| 173 |
+
return output
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class SpatialSoftmax(nn.Module):
|
| 177 |
+
def __init__(self, height, width, channel, temperature=None, data_format="NCHW"):
|
| 178 |
+
super().__init__()
|
| 179 |
+
|
| 180 |
+
self.data_format = data_format
|
| 181 |
+
self.height = height
|
| 182 |
+
self.width = width
|
| 183 |
+
self.channel = channel
|
| 184 |
+
|
| 185 |
+
if temperature:
|
| 186 |
+
self.temperature = Parameter(torch.ones(1) * temperature)
|
| 187 |
+
else:
|
| 188 |
+
self.temperature = 1.0
|
| 189 |
+
|
| 190 |
+
pos_x, pos_y = np.meshgrid(
|
| 191 |
+
np.linspace(-1.0, 1.0, self.height), np.linspace(-1.0, 1.0, self.width)
|
| 192 |
+
)
|
| 193 |
+
pos_x = torch.from_numpy(pos_x.reshape(self.height * self.width)).float()
|
| 194 |
+
pos_y = torch.from_numpy(pos_y.reshape(self.height * self.width)).float()
|
| 195 |
+
self.register_buffer("pos_x", pos_x)
|
| 196 |
+
self.register_buffer("pos_y", pos_y)
|
| 197 |
+
|
| 198 |
+
def forward(self, feature):
|
| 199 |
+
# Output:
|
| 200 |
+
# (N, C*2) x_0 y_0 ...
|
| 201 |
+
|
| 202 |
+
if self.data_format == "NHWC":
|
| 203 |
+
feature = (
|
| 204 |
+
feature.transpose(1, 3)
|
| 205 |
+
.tranpose(2, 3)
|
| 206 |
+
.view(-1, self.height * self.width)
|
| 207 |
+
)
|
| 208 |
+
else:
|
| 209 |
+
feature = feature.view(-1, self.height * self.width)
|
| 210 |
+
|
| 211 |
+
weight = F.softmax(feature / self.temperature, dim=-1)
|
| 212 |
+
expected_x = torch.sum(
|
| 213 |
+
torch.autograd.Variable(self.pos_x) * weight, dim=1, keepdim=True
|
| 214 |
+
)
|
| 215 |
+
expected_y = torch.sum(
|
| 216 |
+
torch.autograd.Variable(self.pos_y) * weight, dim=1, keepdim=True
|
| 217 |
+
)
|
| 218 |
+
expected_xy = torch.cat([expected_x, expected_y], 1)
|
| 219 |
+
feature_keypoints = expected_xy.view(-1, self.channel, 2)
|
| 220 |
+
feature_keypoints[:, :, 1] = (feature_keypoints[:, :, 1] - 1) * 12
|
| 221 |
+
feature_keypoints[:, :, 0] = feature_keypoints[:, :, 0] * 12
|
| 222 |
+
return feature_keypoints
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
class MultiPath_Generator(nn.Module):
|
| 226 |
+
def __init__(self, in_channel, embed_dim, out_channel):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.spatial_softmax = SpatialSoftmax(100, 100, out_channel)
|
| 229 |
+
self.tconv0 = nn.Sequential(
|
| 230 |
+
nn.ConvTranspose2d(in_channel, 256, 4, 2, 1, bias=False),
|
| 231 |
+
nn.BatchNorm2d(256),
|
| 232 |
+
nn.ReLU(True),
|
| 233 |
+
)
|
| 234 |
+
self.tconv1 = nn.Sequential(
|
| 235 |
+
nn.ConvTranspose2d(256, 256, 4, 2, 1, bias=False),
|
| 236 |
+
nn.BatchNorm2d(256),
|
| 237 |
+
nn.ReLU(True),
|
| 238 |
+
)
|
| 239 |
+
self.tconv2 = nn.Sequential(
|
| 240 |
+
nn.ConvTranspose2d(256, 192, 4, 2, 1, bias=False),
|
| 241 |
+
nn.BatchNorm2d(192),
|
| 242 |
+
nn.ReLU(True),
|
| 243 |
+
)
|
| 244 |
+
self.tconv3 = nn.Sequential(
|
| 245 |
+
nn.ConvTranspose2d(192, 64, 4, 2, 1, bias=False),
|
| 246 |
+
nn.BatchNorm2d(64),
|
| 247 |
+
nn.ReLU(True),
|
| 248 |
+
)
|
| 249 |
+
self.tconv4_list = torch.nn.ModuleList(
|
| 250 |
+
[
|
| 251 |
+
nn.Sequential(
|
| 252 |
+
nn.ConvTranspose2d(64, out_channel, 8, 2, 3, bias=False),
|
| 253 |
+
nn.Tanh(),
|
| 254 |
+
)
|
| 255 |
+
for _ in range(6)
|
| 256 |
+
]
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
self.upsample = nn.Upsample(size=(50, 50), mode="bilinear")
|
| 260 |
+
|
| 261 |
+
def forward(self, x, measurements):
|
| 262 |
+
mask = measurements[:, :6]
|
| 263 |
+
mask = mask.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, 100, 100)
|
| 264 |
+
velocity = measurements[:, 6:7].unsqueeze(-1).unsqueeze(-1)
|
| 265 |
+
velocity = velocity.repeat(1, 32, 2, 2)
|
| 266 |
+
|
| 267 |
+
n, d, c = x.shape
|
| 268 |
+
x = x.transpose(1, 2)
|
| 269 |
+
x = x.view(n, -1, 2, 2)
|
| 270 |
+
x = torch.cat([x, velocity], dim=1)
|
| 271 |
+
x = self.tconv0(x)
|
| 272 |
+
x = self.tconv1(x)
|
| 273 |
+
x = self.tconv2(x)
|
| 274 |
+
x = self.tconv3(x)
|
| 275 |
+
x = self.upsample(x)
|
| 276 |
+
xs = []
|
| 277 |
+
for i in range(6):
|
| 278 |
+
xt = self.tconv4_list[i](x)
|
| 279 |
+
xs.append(xt)
|
| 280 |
+
xs = torch.stack(xs, dim=1)
|
| 281 |
+
x = torch.sum(xs * mask, dim=1)
|
| 282 |
+
x = self.spatial_softmax(x)
|
| 283 |
+
return x
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
class LinearWaypointsPredictor(nn.Module):
|
| 287 |
+
def __init__(self, input_dim, cumsum=True):
|
| 288 |
+
super().__init__()
|
| 289 |
+
self.cumsum = cumsum
|
| 290 |
+
self.rank_embed = nn.Parameter(torch.zeros(1, 10, input_dim))
|
| 291 |
+
self.head_fc1_list = nn.ModuleList([nn.Linear(input_dim, 64) for _ in range(6)])
|
| 292 |
+
self.head_relu = nn.ReLU(inplace=True)
|
| 293 |
+
self.head_fc2_list = nn.ModuleList([nn.Linear(64, 2) for _ in range(6)])
|
| 294 |
+
|
| 295 |
+
def forward(self, x, measurements):
|
| 296 |
+
# input shape: n 10 embed_dim
|
| 297 |
+
bs, n, dim = x.shape
|
| 298 |
+
x = x + self.rank_embed
|
| 299 |
+
x = x.reshape(-1, dim)
|
| 300 |
+
|
| 301 |
+
mask = measurements[:, :6]
|
| 302 |
+
mask = torch.unsqueeze(mask, -1).repeat(n, 1, 2)
|
| 303 |
+
|
| 304 |
+
rs = []
|
| 305 |
+
for i in range(6):
|
| 306 |
+
res = self.head_fc1_list[i](x)
|
| 307 |
+
res = self.head_relu(res)
|
| 308 |
+
res = self.head_fc2_list[i](res)
|
| 309 |
+
rs.append(res)
|
| 310 |
+
rs = torch.stack(rs, 1)
|
| 311 |
+
x = torch.sum(rs * mask, dim=1)
|
| 312 |
+
|
| 313 |
+
x = x.view(bs, n, 2)
|
| 314 |
+
if self.cumsum:
|
| 315 |
+
x = torch.cumsum(x, 1)
|
| 316 |
+
return x
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class GRUWaypointsPredictor(nn.Module):
|
| 320 |
+
def __init__(self, input_dim, waypoints=10):
|
| 321 |
+
super().__init__()
|
| 322 |
+
# self.gru = torch.nn.GRUCell(input_size=input_dim, hidden_size=64)
|
| 323 |
+
self.gru = torch.nn.GRU(input_size=input_dim, hidden_size=64, batch_first=True)
|
| 324 |
+
self.encoder = nn.Linear(2, 64)
|
| 325 |
+
self.decoder = nn.Linear(64, 2)
|
| 326 |
+
self.waypoints = waypoints
|
| 327 |
+
|
| 328 |
+
def forward(self, x, target_point):
|
| 329 |
+
bs = x.shape[0]
|
| 330 |
+
z = self.encoder(target_point).unsqueeze(0)
|
| 331 |
+
output, _ = self.gru(x, z)
|
| 332 |
+
output = output.reshape(bs * self.waypoints, -1)
|
| 333 |
+
output = self.decoder(output).reshape(bs, self.waypoints, 2)
|
| 334 |
+
output = torch.cumsum(output, 1)
|
| 335 |
+
return output
|
| 336 |
+
|
| 337 |
+
class GRUWaypointsPredictorWithCommand(nn.Module):
|
| 338 |
+
def __init__(self, input_dim, waypoints=10):
|
| 339 |
+
super().__init__()
|
| 340 |
+
# self.gru = torch.nn.GRUCell(input_size=input_dim, hidden_size=64)
|
| 341 |
+
self.grus = nn.ModuleList([torch.nn.GRU(input_size=input_dim, hidden_size=64, batch_first=True) for _ in range(6)])
|
| 342 |
+
self.encoder = nn.Linear(2, 64)
|
| 343 |
+
self.decoders = nn.ModuleList([nn.Linear(64, 2) for _ in range(6)])
|
| 344 |
+
self.waypoints = waypoints
|
| 345 |
+
|
| 346 |
+
def forward(self, x, target_point, measurements):
|
| 347 |
+
bs, n, dim = x.shape
|
| 348 |
+
mask = measurements[:, :6, None, None]
|
| 349 |
+
mask = mask.repeat(1, 1, self.waypoints, 2)
|
| 350 |
+
|
| 351 |
+
z = self.encoder(target_point).unsqueeze(0)
|
| 352 |
+
outputs = []
|
| 353 |
+
for i in range(6):
|
| 354 |
+
output, _ = self.grus[i](x, z)
|
| 355 |
+
output = output.reshape(bs * self.waypoints, -1)
|
| 356 |
+
output = self.decoders[i](output).reshape(bs, self.waypoints, 2)
|
| 357 |
+
output = torch.cumsum(output, 1)
|
| 358 |
+
outputs.append(output)
|
| 359 |
+
outputs = torch.stack(outputs, 1)
|
| 360 |
+
output = torch.sum(outputs * mask, dim=1)
|
| 361 |
+
return output
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class TransformerDecoder(nn.Module):
|
| 365 |
+
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
| 366 |
+
super().__init__()
|
| 367 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
| 368 |
+
self.num_layers = num_layers
|
| 369 |
+
self.norm = norm
|
| 370 |
+
self.return_intermediate = return_intermediate
|
| 371 |
+
|
| 372 |
+
def forward(
|
| 373 |
+
self,
|
| 374 |
+
tgt,
|
| 375 |
+
memory,
|
| 376 |
+
tgt_mask: Optional[Tensor] = None,
|
| 377 |
+
memory_mask: Optional[Tensor] = None,
|
| 378 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
| 379 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
| 380 |
+
pos: Optional[Tensor] = None,
|
| 381 |
+
query_pos: Optional[Tensor] = None,
|
| 382 |
+
):
|
| 383 |
+
output = tgt
|
| 384 |
+
|
| 385 |
+
intermediate = []
|
| 386 |
+
|
| 387 |
+
for layer in self.layers:
|
| 388 |
+
output = layer(
|
| 389 |
+
output,
|
| 390 |
+
memory,
|
| 391 |
+
tgt_mask=tgt_mask,
|
| 392 |
+
memory_mask=memory_mask,
|
| 393 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
| 394 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
| 395 |
+
pos=pos,
|
| 396 |
+
query_pos=query_pos,
|
| 397 |
+
)
|
| 398 |
+
if self.return_intermediate:
|
| 399 |
+
intermediate.append(self.norm(output))
|
| 400 |
+
|
| 401 |
+
if self.norm is not None:
|
| 402 |
+
output = self.norm(output)
|
| 403 |
+
if self.return_intermediate:
|
| 404 |
+
intermediate.pop()
|
| 405 |
+
intermediate.append(output)
|
| 406 |
+
|
| 407 |
+
if self.return_intermediate:
|
| 408 |
+
return torch.stack(intermediate)
|
| 409 |
+
|
| 410 |
+
return output.unsqueeze(0)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
class TransformerEncoderLayer(nn.Module):
|
| 414 |
+
def __init__(
|
| 415 |
+
self,
|
| 416 |
+
d_model,
|
| 417 |
+
nhead,
|
| 418 |
+
dim_feedforward=2048,
|
| 419 |
+
dropout=0.1,
|
| 420 |
+
activation=nn.ReLU(),
|
| 421 |
+
normalize_before=False,
|
| 422 |
+
):
|
| 423 |
+
super().__init__()
|
| 424 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 425 |
+
# Implementation of Feedforward model
|
| 426 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 427 |
+
self.dropout = nn.Dropout(dropout)
|
| 428 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 429 |
+
|
| 430 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 431 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 432 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 433 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 434 |
+
|
| 435 |
+
self.activation = activation()
|
| 436 |
+
self.normalize_before = normalize_before
|
| 437 |
+
|
| 438 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
| 439 |
+
return tensor if pos is None else tensor + pos
|
| 440 |
+
|
| 441 |
+
def forward_post(
|
| 442 |
+
self,
|
| 443 |
+
src,
|
| 444 |
+
src_mask: Optional[Tensor] = None,
|
| 445 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
| 446 |
+
pos: Optional[Tensor] = None,
|
| 447 |
+
):
|
| 448 |
+
q = k = self.with_pos_embed(src, pos)
|
| 449 |
+
src2 = self.self_attn(
|
| 450 |
+
q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
| 451 |
+
)[0]
|
| 452 |
+
src = src + self.dropout1(src2)
|
| 453 |
+
src = self.norm1(src)
|
| 454 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
| 455 |
+
src = src + self.dropout2(src2)
|
| 456 |
+
src = self.norm2(src)
|
| 457 |
+
return src
|
| 458 |
+
|
| 459 |
+
def forward_pre(
|
| 460 |
+
self,
|
| 461 |
+
src,
|
| 462 |
+
src_mask: Optional[Tensor] = None,
|
| 463 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
| 464 |
+
pos: Optional[Tensor] = None,
|
| 465 |
+
):
|
| 466 |
+
src2 = self.norm1(src)
|
| 467 |
+
q = k = self.with_pos_embed(src2, pos)
|
| 468 |
+
src2 = self.self_attn(
|
| 469 |
+
q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
| 470 |
+
)[0]
|
| 471 |
+
src = src + self.dropout1(src2)
|
| 472 |
+
src2 = self.norm2(src)
|
| 473 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
| 474 |
+
src = src + self.dropout2(src2)
|
| 475 |
+
return src
|
| 476 |
+
|
| 477 |
+
def forward(
|
| 478 |
+
self,
|
| 479 |
+
src,
|
| 480 |
+
src_mask: Optional[Tensor] = None,
|
| 481 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
| 482 |
+
pos: Optional[Tensor] = None,
|
| 483 |
+
):
|
| 484 |
+
if self.normalize_before:
|
| 485 |
+
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
| 486 |
+
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
class TransformerDecoderLayer(nn.Module):
|
| 490 |
+
def __init__(
|
| 491 |
+
self,
|
| 492 |
+
d_model,
|
| 493 |
+
nhead,
|
| 494 |
+
dim_feedforward=2048,
|
| 495 |
+
dropout=0.1,
|
| 496 |
+
activation=nn.ReLU(),
|
| 497 |
+
normalize_before=False,
|
| 498 |
+
):
|
| 499 |
+
super().__init__()
|
| 500 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 501 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 502 |
+
# Implementation of Feedforward model
|
| 503 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 504 |
+
self.dropout = nn.Dropout(dropout)
|
| 505 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 506 |
+
|
| 507 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 508 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 509 |
+
self.norm3 = nn.LayerNorm(d_model)
|
| 510 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 511 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 512 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 513 |
+
|
| 514 |
+
self.activation = activation()
|
| 515 |
+
self.normalize_before = normalize_before
|
| 516 |
+
|
| 517 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
| 518 |
+
return tensor if pos is None else tensor + pos
|
| 519 |
+
|
| 520 |
+
def forward_post(
|
| 521 |
+
self,
|
| 522 |
+
tgt,
|
| 523 |
+
memory,
|
| 524 |
+
tgt_mask: Optional[Tensor] = None,
|
| 525 |
+
memory_mask: Optional[Tensor] = None,
|
| 526 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
| 527 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
| 528 |
+
pos: Optional[Tensor] = None,
|
| 529 |
+
query_pos: Optional[Tensor] = None,
|
| 530 |
+
):
|
| 531 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
| 532 |
+
tgt2 = self.self_attn(
|
| 533 |
+
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
| 534 |
+
)[0]
|
| 535 |
+
tgt = tgt + self.dropout1(tgt2)
|
| 536 |
+
tgt = self.norm1(tgt)
|
| 537 |
+
tgt2 = self.multihead_attn(
|
| 538 |
+
query=self.with_pos_embed(tgt, query_pos),
|
| 539 |
+
key=self.with_pos_embed(memory, pos),
|
| 540 |
+
value=memory,
|
| 541 |
+
attn_mask=memory_mask,
|
| 542 |
+
key_padding_mask=memory_key_padding_mask,
|
| 543 |
+
)[0]
|
| 544 |
+
tgt = tgt + self.dropout2(tgt2)
|
| 545 |
+
tgt = self.norm2(tgt)
|
| 546 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
| 547 |
+
tgt = tgt + self.dropout3(tgt2)
|
| 548 |
+
tgt = self.norm3(tgt)
|
| 549 |
+
return tgt
|
| 550 |
+
|
| 551 |
+
def forward_pre(
|
| 552 |
+
self,
|
| 553 |
+
tgt,
|
| 554 |
+
memory,
|
| 555 |
+
tgt_mask: Optional[Tensor] = None,
|
| 556 |
+
memory_mask: Optional[Tensor] = None,
|
| 557 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
| 558 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
| 559 |
+
pos: Optional[Tensor] = None,
|
| 560 |
+
query_pos: Optional[Tensor] = None,
|
| 561 |
+
):
|
| 562 |
+
tgt2 = self.norm1(tgt)
|
| 563 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
| 564 |
+
tgt2 = self.self_attn(
|
| 565 |
+
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
|
| 566 |
+
)[0]
|
| 567 |
+
tgt = tgt + self.dropout1(tgt2)
|
| 568 |
+
tgt2 = self.norm2(tgt)
|
| 569 |
+
tgt2 = self.multihead_attn(
|
| 570 |
+
query=self.with_pos_embed(tgt2, query_pos),
|
| 571 |
+
key=self.with_pos_embed(memory, pos),
|
| 572 |
+
value=memory,
|
| 573 |
+
attn_mask=memory_mask,
|
| 574 |
+
key_padding_mask=memory_key_padding_mask,
|
| 575 |
+
)[0]
|
| 576 |
+
tgt = tgt + self.dropout2(tgt2)
|
| 577 |
+
tgt2 = self.norm3(tgt)
|
| 578 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
| 579 |
+
tgt = tgt + self.dropout3(tgt2)
|
| 580 |
+
return tgt
|
| 581 |
+
|
| 582 |
+
def forward(
|
| 583 |
+
self,
|
| 584 |
+
tgt,
|
| 585 |
+
memory,
|
| 586 |
+
tgt_mask: Optional[Tensor] = None,
|
| 587 |
+
memory_mask: Optional[Tensor] = None,
|
| 588 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
| 589 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
| 590 |
+
pos: Optional[Tensor] = None,
|
| 591 |
+
query_pos: Optional[Tensor] = None,
|
| 592 |
+
):
|
| 593 |
+
if self.normalize_before:
|
| 594 |
+
return self.forward_pre(
|
| 595 |
+
tgt,
|
| 596 |
+
memory,
|
| 597 |
+
tgt_mask,
|
| 598 |
+
memory_mask,
|
| 599 |
+
tgt_key_padding_mask,
|
| 600 |
+
memory_key_padding_mask,
|
| 601 |
+
pos,
|
| 602 |
+
query_pos,
|
| 603 |
+
)
|
| 604 |
+
return self.forward_post(
|
| 605 |
+
tgt,
|
| 606 |
+
memory,
|
| 607 |
+
tgt_mask,
|
| 608 |
+
memory_mask,
|
| 609 |
+
tgt_key_padding_mask,
|
| 610 |
+
memory_key_padding_mask,
|
| 611 |
+
pos,
|
| 612 |
+
query_pos,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
def _get_clones(module, N):
|
| 617 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
def _get_activation_fn(activation):
|
| 621 |
+
"""Return an activation function given a string"""
|
| 622 |
+
if activation == "relu":
|
| 623 |
+
return F.relu
|
| 624 |
+
if activation == "gelu":
|
| 625 |
+
return F.gelu
|
| 626 |
+
if activation == "glu":
|
| 627 |
+
return F.glu
|
| 628 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
def build_attn_mask(mask_type):
|
| 632 |
+
mask = torch.ones((151, 151), dtype=torch.bool).cuda()
|
| 633 |
+
if mask_type == "seperate_all":
|
| 634 |
+
mask[:50, :50] = False
|
| 635 |
+
mask[50:67, 50:67] = False
|
| 636 |
+
mask[67:84, 67:84] = False
|
| 637 |
+
mask[84:101, 84:101] = False
|
| 638 |
+
mask[101:151, 101:151] = False
|
| 639 |
+
elif mask_type == "seperate_view":
|
| 640 |
+
mask[:50, :50] = False
|
| 641 |
+
mask[50:67, 50:67] = False
|
| 642 |
+
mask[67:84, 67:84] = False
|
| 643 |
+
mask[84:101, 84:101] = False
|
| 644 |
+
mask[101:151, :] = False
|
| 645 |
+
mask[:, 101:151] = False
|
| 646 |
+
return mask
|
| 647 |
+
# class InterfuserModel(nn.Module):
|
| 648 |
+
|
| 649 |
+
class InterfuserModel(nn.Module):
|
| 650 |
+
def __init__(
|
| 651 |
+
self,
|
| 652 |
+
img_size=224,
|
| 653 |
+
multi_view_img_size=112,
|
| 654 |
+
patch_size=8,
|
| 655 |
+
in_chans=3,
|
| 656 |
+
embed_dim=768,
|
| 657 |
+
enc_depth=6,
|
| 658 |
+
dec_depth=6,
|
| 659 |
+
dim_feedforward=2048,
|
| 660 |
+
normalize_before=False,
|
| 661 |
+
rgb_backbone_name="r50",
|
| 662 |
+
lidar_backbone_name="r50",
|
| 663 |
+
num_heads=8,
|
| 664 |
+
norm_layer=None,
|
| 665 |
+
dropout=0.1,
|
| 666 |
+
end2end=False,
|
| 667 |
+
direct_concat=False,
|
| 668 |
+
separate_view_attention=False,
|
| 669 |
+
separate_all_attention=False,
|
| 670 |
+
act_layer=None,
|
| 671 |
+
weight_init="",
|
| 672 |
+
freeze_num=-1,
|
| 673 |
+
with_lidar=False,
|
| 674 |
+
with_right_left_sensors=False,
|
| 675 |
+
with_center_sensor=False,
|
| 676 |
+
traffic_pred_head_type="det",
|
| 677 |
+
waypoints_pred_head="heatmap",
|
| 678 |
+
reverse_pos=True,
|
| 679 |
+
use_different_backbone=False,
|
| 680 |
+
use_view_embed=False,
|
| 681 |
+
use_mmad_pretrain=None,
|
| 682 |
+
):
|
| 683 |
+
super().__init__()
|
| 684 |
+
self.traffic_pred_head_type = traffic_pred_head_type
|
| 685 |
+
self.num_features = (
|
| 686 |
+
self.embed_dim
|
| 687 |
+
) = embed_dim # num_features for consistency with other models
|
| 688 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
| 689 |
+
act_layer = act_layer or nn.GELU
|
| 690 |
+
|
| 691 |
+
self.reverse_pos = reverse_pos
|
| 692 |
+
self.waypoints_pred_head = waypoints_pred_head
|
| 693 |
+
self.with_lidar = with_lidar
|
| 694 |
+
self.with_right_left_sensors = with_right_left_sensors
|
| 695 |
+
self.with_center_sensor = with_center_sensor
|
| 696 |
+
|
| 697 |
+
self.direct_concat = direct_concat
|
| 698 |
+
self.separate_view_attention = separate_view_attention
|
| 699 |
+
self.separate_all_attention = separate_all_attention
|
| 700 |
+
self.end2end = end2end
|
| 701 |
+
self.use_view_embed = use_view_embed
|
| 702 |
+
|
| 703 |
+
if self.direct_concat:
|
| 704 |
+
in_chans = in_chans * 4
|
| 705 |
+
self.with_center_sensor = False
|
| 706 |
+
self.with_right_left_sensors = False
|
| 707 |
+
|
| 708 |
+
if self.separate_view_attention:
|
| 709 |
+
self.attn_mask = build_attn_mask("seperate_view")
|
| 710 |
+
elif self.separate_all_attention:
|
| 711 |
+
self.attn_mask = build_attn_mask("seperate_all")
|
| 712 |
+
else:
|
| 713 |
+
self.attn_mask = None
|
| 714 |
+
|
| 715 |
+
if use_different_backbone:
|
| 716 |
+
if rgb_backbone_name == "r50":
|
| 717 |
+
self.rgb_backbone = resnet50d(
|
| 718 |
+
pretrained=True,
|
| 719 |
+
in_chans=in_chans,
|
| 720 |
+
features_only=True,
|
| 721 |
+
out_indices=[4],
|
| 722 |
+
)
|
| 723 |
+
elif rgb_backbone_name == "r26":
|
| 724 |
+
self.rgb_backbone = resnet26d(
|
| 725 |
+
pretrained=True,
|
| 726 |
+
in_chans=in_chans,
|
| 727 |
+
features_only=True,
|
| 728 |
+
out_indices=[4],
|
| 729 |
+
)
|
| 730 |
+
elif rgb_backbone_name == "r18":
|
| 731 |
+
self.rgb_backbone = resnet18d(
|
| 732 |
+
pretrained=True,
|
| 733 |
+
in_chans=in_chans,
|
| 734 |
+
features_only=True,
|
| 735 |
+
out_indices=[4],
|
| 736 |
+
)
|
| 737 |
+
if lidar_backbone_name == "r50":
|
| 738 |
+
self.lidar_backbone = resnet50d(
|
| 739 |
+
pretrained=False,
|
| 740 |
+
in_chans=in_chans,
|
| 741 |
+
features_only=True,
|
| 742 |
+
out_indices=[4],
|
| 743 |
+
)
|
| 744 |
+
elif lidar_backbone_name == "r26":
|
| 745 |
+
self.lidar_backbone = resnet26d(
|
| 746 |
+
pretrained=False,
|
| 747 |
+
in_chans=in_chans,
|
| 748 |
+
features_only=True,
|
| 749 |
+
out_indices=[4],
|
| 750 |
+
)
|
| 751 |
+
elif lidar_backbone_name == "r18":
|
| 752 |
+
self.lidar_backbone = resnet18d(
|
| 753 |
+
pretrained=False, in_chans=3, features_only=True, out_indices=[4]
|
| 754 |
+
)
|
| 755 |
+
rgb_embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
|
| 756 |
+
lidar_embed_layer = partial(HybridEmbed, backbone=self.lidar_backbone)
|
| 757 |
+
|
| 758 |
+
if use_mmad_pretrain:
|
| 759 |
+
params = torch.load(use_mmad_pretrain)["state_dict"]
|
| 760 |
+
updated_params = OrderedDict()
|
| 761 |
+
for key in params:
|
| 762 |
+
if "backbone" in key:
|
| 763 |
+
updated_params[key.replace("backbone.", "")] = params[key]
|
| 764 |
+
self.rgb_backbone.load_state_dict(updated_params)
|
| 765 |
+
|
| 766 |
+
self.rgb_patch_embed = rgb_embed_layer(
|
| 767 |
+
img_size=img_size,
|
| 768 |
+
patch_size=patch_size,
|
| 769 |
+
in_chans=in_chans,
|
| 770 |
+
embed_dim=embed_dim,
|
| 771 |
+
)
|
| 772 |
+
self.lidar_patch_embed = lidar_embed_layer(
|
| 773 |
+
img_size=img_size,
|
| 774 |
+
patch_size=patch_size,
|
| 775 |
+
in_chans=3,
|
| 776 |
+
embed_dim=embed_dim,
|
| 777 |
+
)
|
| 778 |
+
else:
|
| 779 |
+
if rgb_backbone_name == "r50":
|
| 780 |
+
self.rgb_backbone = resnet50d(
|
| 781 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 782 |
+
)
|
| 783 |
+
elif rgb_backbone_name == "r101":
|
| 784 |
+
self.rgb_backbone = resnet101d(
|
| 785 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 786 |
+
)
|
| 787 |
+
elif rgb_backbone_name == "r26":
|
| 788 |
+
self.rgb_backbone = resnet26d(
|
| 789 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 790 |
+
)
|
| 791 |
+
elif rgb_backbone_name == "r18":
|
| 792 |
+
self.rgb_backbone = resnet18d(
|
| 793 |
+
pretrained=True, in_chans=3, features_only=True, out_indices=[4]
|
| 794 |
+
)
|
| 795 |
+
embed_layer = partial(HybridEmbed, backbone=self.rgb_backbone)
|
| 796 |
+
|
| 797 |
+
self.rgb_patch_embed = embed_layer(
|
| 798 |
+
img_size=img_size,
|
| 799 |
+
patch_size=patch_size,
|
| 800 |
+
in_chans=in_chans,
|
| 801 |
+
embed_dim=embed_dim,
|
| 802 |
+
)
|
| 803 |
+
self.lidar_patch_embed = embed_layer(
|
| 804 |
+
img_size=img_size,
|
| 805 |
+
patch_size=patch_size,
|
| 806 |
+
in_chans=in_chans,
|
| 807 |
+
embed_dim=embed_dim,
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
+
self.global_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
|
| 811 |
+
self.view_embed = nn.Parameter(torch.zeros(1, embed_dim, 5, 1))
|
| 812 |
+
|
| 813 |
+
if self.end2end:
|
| 814 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 4))
|
| 815 |
+
self.query_embed = nn.Parameter(torch.zeros(4, 1, embed_dim))
|
| 816 |
+
elif self.waypoints_pred_head == "heatmap":
|
| 817 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 5))
|
| 818 |
+
self.query_embed = nn.Parameter(torch.zeros(400 + 5, 1, embed_dim))
|
| 819 |
+
else:
|
| 820 |
+
self.query_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 11))
|
| 821 |
+
self.query_embed = nn.Parameter(torch.zeros(400 + 11, 1, embed_dim))
|
| 822 |
+
|
| 823 |
+
if self.end2end:
|
| 824 |
+
self.waypoints_generator = GRUWaypointsPredictor(embed_dim, 4)
|
| 825 |
+
elif self.waypoints_pred_head == "heatmap":
|
| 826 |
+
self.waypoints_generator = MultiPath_Generator(
|
| 827 |
+
embed_dim + 32, embed_dim, 10
|
| 828 |
+
)
|
| 829 |
+
elif self.waypoints_pred_head == "gru":
|
| 830 |
+
self.waypoints_generator = GRUWaypointsPredictor(embed_dim)
|
| 831 |
+
elif self.waypoints_pred_head == "gru-command":
|
| 832 |
+
self.waypoints_generator = GRUWaypointsPredictorWithCommand(embed_dim)
|
| 833 |
+
elif self.waypoints_pred_head == "linear":
|
| 834 |
+
self.waypoints_generator = LinearWaypointsPredictor(embed_dim)
|
| 835 |
+
elif self.waypoints_pred_head == "linear-sum":
|
| 836 |
+
self.waypoints_generator = LinearWaypointsPredictor(embed_dim, cumsum=True)
|
| 837 |
+
|
| 838 |
+
self.junction_pred_head = nn.Linear(embed_dim, 2)
|
| 839 |
+
self.traffic_light_pred_head = nn.Linear(embed_dim, 2)
|
| 840 |
+
self.stop_sign_head = nn.Linear(embed_dim, 2)
|
| 841 |
+
|
| 842 |
+
if self.traffic_pred_head_type == "det":
|
| 843 |
+
self.traffic_pred_head = nn.Sequential(
|
| 844 |
+
*[
|
| 845 |
+
nn.Linear(embed_dim + 32, 64),
|
| 846 |
+
nn.ReLU(),
|
| 847 |
+
nn.Linear(64, 7),
|
| 848 |
+
# nn.Sigmoid(),
|
| 849 |
+
]
|
| 850 |
+
)
|
| 851 |
+
elif self.traffic_pred_head_type == "seg":
|
| 852 |
+
self.traffic_pred_head = nn.Sequential(
|
| 853 |
+
*[nn.Linear(embed_dim, 64), nn.ReLU(), nn.Linear(64, 1), nn.Sigmoid()]
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
self.position_encoding = PositionEmbeddingSine(embed_dim // 2, normalize=True)
|
| 857 |
+
|
| 858 |
+
encoder_layer = TransformerEncoderLayer(
|
| 859 |
+
embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before
|
| 860 |
+
)
|
| 861 |
+
self.encoder = TransformerEncoder(encoder_layer, enc_depth, None)
|
| 862 |
+
|
| 863 |
+
decoder_layer = TransformerDecoderLayer(
|
| 864 |
+
embed_dim, num_heads, dim_feedforward, dropout, act_layer, normalize_before
|
| 865 |
+
)
|
| 866 |
+
decoder_norm = nn.LayerNorm(embed_dim)
|
| 867 |
+
self.decoder = TransformerDecoder(
|
| 868 |
+
decoder_layer, dec_depth, decoder_norm, return_intermediate=False
|
| 869 |
+
)
|
| 870 |
+
self.reset_parameters()
|
| 871 |
+
|
| 872 |
+
def reset_parameters(self):
|
| 873 |
+
nn.init.uniform_(self.global_embed)
|
| 874 |
+
nn.init.uniform_(self.view_embed)
|
| 875 |
+
nn.init.uniform_(self.query_embed)
|
| 876 |
+
nn.init.uniform_(self.query_pos_embed)
|
| 877 |
+
|
| 878 |
+
def forward_features(
|
| 879 |
+
self,
|
| 880 |
+
front_image,
|
| 881 |
+
left_image,
|
| 882 |
+
right_image,
|
| 883 |
+
front_center_image,
|
| 884 |
+
lidar,
|
| 885 |
+
measurements,
|
| 886 |
+
):
|
| 887 |
+
features = []
|
| 888 |
+
|
| 889 |
+
# Front view processing
|
| 890 |
+
front_image_token, front_image_token_global = self.rgb_patch_embed(front_image)
|
| 891 |
+
if self.use_view_embed:
|
| 892 |
+
front_image_token = (
|
| 893 |
+
front_image_token
|
| 894 |
+
+ self.view_embed[:, :, 0:1, :]
|
| 895 |
+
+ self.position_encoding(front_image_token)
|
| 896 |
+
)
|
| 897 |
+
else:
|
| 898 |
+
front_image_token = front_image_token + self.position_encoding(
|
| 899 |
+
front_image_token
|
| 900 |
+
)
|
| 901 |
+
front_image_token = front_image_token.flatten(2).permute(2, 0, 1)
|
| 902 |
+
front_image_token_global = (
|
| 903 |
+
front_image_token_global
|
| 904 |
+
+ self.view_embed[:, :, 0, :]
|
| 905 |
+
+ self.global_embed[:, :, 0:1]
|
| 906 |
+
)
|
| 907 |
+
front_image_token_global = front_image_token_global.permute(2, 0, 1)
|
| 908 |
+
features.extend([front_image_token, front_image_token_global])
|
| 909 |
+
|
| 910 |
+
if self.with_right_left_sensors:
|
| 911 |
+
# Left view processing
|
| 912 |
+
left_image_token, left_image_token_global = self.rgb_patch_embed(left_image)
|
| 913 |
+
if self.use_view_embed:
|
| 914 |
+
left_image_token = (
|
| 915 |
+
left_image_token
|
| 916 |
+
+ self.view_embed[:, :, 1:2, :]
|
| 917 |
+
+ self.position_encoding(left_image_token)
|
| 918 |
+
)
|
| 919 |
+
else:
|
| 920 |
+
left_image_token = left_image_token + self.position_encoding(
|
| 921 |
+
left_image_token
|
| 922 |
+
)
|
| 923 |
+
left_image_token = left_image_token.flatten(2).permute(2, 0, 1)
|
| 924 |
+
left_image_token_global = (
|
| 925 |
+
left_image_token_global
|
| 926 |
+
+ self.view_embed[:, :, 1, :]
|
| 927 |
+
+ self.global_embed[:, :, 1:2]
|
| 928 |
+
)
|
| 929 |
+
left_image_token_global = left_image_token_global.permute(2, 0, 1)
|
| 930 |
+
|
| 931 |
+
# Right view processing
|
| 932 |
+
right_image_token, right_image_token_global = self.rgb_patch_embed(
|
| 933 |
+
right_image
|
| 934 |
+
)
|
| 935 |
+
if self.use_view_embed:
|
| 936 |
+
right_image_token = (
|
| 937 |
+
right_image_token
|
| 938 |
+
+ self.view_embed[:, :, 2:3, :]
|
| 939 |
+
+ self.position_encoding(right_image_token)
|
| 940 |
+
)
|
| 941 |
+
else:
|
| 942 |
+
right_image_token = right_image_token + self.position_encoding(
|
| 943 |
+
right_image_token
|
| 944 |
+
)
|
| 945 |
+
right_image_token = right_image_token.flatten(2).permute(2, 0, 1)
|
| 946 |
+
right_image_token_global = (
|
| 947 |
+
right_image_token_global
|
| 948 |
+
+ self.view_embed[:, :, 2, :]
|
| 949 |
+
+ self.global_embed[:, :, 2:3]
|
| 950 |
+
)
|
| 951 |
+
right_image_token_global = right_image_token_global.permute(2, 0, 1)
|
| 952 |
+
|
| 953 |
+
features.extend(
|
| 954 |
+
[
|
| 955 |
+
left_image_token,
|
| 956 |
+
left_image_token_global,
|
| 957 |
+
right_image_token,
|
| 958 |
+
right_image_token_global,
|
| 959 |
+
]
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
if self.with_center_sensor:
|
| 963 |
+
# Front center view processing
|
| 964 |
+
(
|
| 965 |
+
front_center_image_token,
|
| 966 |
+
front_center_image_token_global,
|
| 967 |
+
) = self.rgb_patch_embed(front_center_image)
|
| 968 |
+
if self.use_view_embed:
|
| 969 |
+
front_center_image_token = (
|
| 970 |
+
front_center_image_token
|
| 971 |
+
+ self.view_embed[:, :, 3:4, :]
|
| 972 |
+
+ self.position_encoding(front_center_image_token)
|
| 973 |
+
)
|
| 974 |
+
else:
|
| 975 |
+
front_center_image_token = (
|
| 976 |
+
front_center_image_token
|
| 977 |
+
+ self.position_encoding(front_center_image_token)
|
| 978 |
+
)
|
| 979 |
+
|
| 980 |
+
front_center_image_token = front_center_image_token.flatten(2).permute(
|
| 981 |
+
2, 0, 1
|
| 982 |
+
)
|
| 983 |
+
front_center_image_token_global = (
|
| 984 |
+
front_center_image_token_global
|
| 985 |
+
+ self.view_embed[:, :, 3, :]
|
| 986 |
+
+ self.global_embed[:, :, 3:4]
|
| 987 |
+
)
|
| 988 |
+
front_center_image_token_global = front_center_image_token_global.permute(
|
| 989 |
+
2, 0, 1
|
| 990 |
+
)
|
| 991 |
+
features.extend([front_center_image_token, front_center_image_token_global])
|
| 992 |
+
|
| 993 |
+
if self.with_lidar:
|
| 994 |
+
lidar_token, lidar_token_global = self.lidar_patch_embed(lidar)
|
| 995 |
+
if self.use_view_embed:
|
| 996 |
+
lidar_token = (
|
| 997 |
+
lidar_token
|
| 998 |
+
+ self.view_embed[:, :, 4:5, :]
|
| 999 |
+
+ self.position_encoding(lidar_token)
|
| 1000 |
+
)
|
| 1001 |
+
else:
|
| 1002 |
+
lidar_token = lidar_token + self.position_encoding(lidar_token)
|
| 1003 |
+
lidar_token = lidar_token.flatten(2).permute(2, 0, 1)
|
| 1004 |
+
lidar_token_global = (
|
| 1005 |
+
lidar_token_global
|
| 1006 |
+
+ self.view_embed[:, :, 4, :]
|
| 1007 |
+
+ self.global_embed[:, :, 4:5]
|
| 1008 |
+
)
|
| 1009 |
+
lidar_token_global = lidar_token_global.permute(2, 0, 1)
|
| 1010 |
+
features.extend([lidar_token, lidar_token_global])
|
| 1011 |
+
|
| 1012 |
+
features = torch.cat(features, 0)
|
| 1013 |
+
return features
|
| 1014 |
+
|
| 1015 |
+
def forward(self, x):
|
| 1016 |
+
front_image = x["rgb"]
|
| 1017 |
+
left_image = x["rgb_left"]
|
| 1018 |
+
right_image = x["rgb_right"]
|
| 1019 |
+
front_center_image = x["rgb_center"]
|
| 1020 |
+
measurements = x["measurements"]
|
| 1021 |
+
target_point = x["target_point"]
|
| 1022 |
+
lidar = x["lidar"]
|
| 1023 |
+
|
| 1024 |
+
if self.direct_concat:
|
| 1025 |
+
img_size = front_image.shape[-1]
|
| 1026 |
+
left_image = torch.nn.functional.interpolate(
|
| 1027 |
+
left_image, size=(img_size, img_size)
|
| 1028 |
+
)
|
| 1029 |
+
right_image = torch.nn.functional.interpolate(
|
| 1030 |
+
right_image, size=(img_size, img_size)
|
| 1031 |
+
)
|
| 1032 |
+
front_center_image = torch.nn.functional.interpolate(
|
| 1033 |
+
front_center_image, size=(img_size, img_size)
|
| 1034 |
+
)
|
| 1035 |
+
front_image = torch.cat(
|
| 1036 |
+
[front_image, left_image, right_image, front_center_image], dim=1
|
| 1037 |
+
)
|
| 1038 |
+
features = self.forward_features(
|
| 1039 |
+
front_image,
|
| 1040 |
+
left_image,
|
| 1041 |
+
right_image,
|
| 1042 |
+
front_center_image,
|
| 1043 |
+
lidar,
|
| 1044 |
+
measurements,
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
bs = front_image.shape[0]
|
| 1048 |
+
|
| 1049 |
+
if self.end2end:
|
| 1050 |
+
tgt = self.query_pos_embed.repeat(bs, 1, 1)
|
| 1051 |
+
else:
|
| 1052 |
+
tgt = self.position_encoding(
|
| 1053 |
+
torch.ones((bs, 1, 20, 20), device=x["rgb"].device)
|
| 1054 |
+
)
|
| 1055 |
+
tgt = tgt.flatten(2)
|
| 1056 |
+
tgt = torch.cat([tgt, self.query_pos_embed.repeat(bs, 1, 1)], 2)
|
| 1057 |
+
tgt = tgt.permute(2, 0, 1)
|
| 1058 |
+
|
| 1059 |
+
memory = self.encoder(features, mask=self.attn_mask)
|
| 1060 |
+
hs = self.decoder(self.query_embed.repeat(1, bs, 1), memory, query_pos=tgt)[0]
|
| 1061 |
+
|
| 1062 |
+
hs = hs.permute(1, 0, 2) # Batchsize , N, C
|
| 1063 |
+
if self.end2end:
|
| 1064 |
+
waypoints = self.waypoints_generator(hs, target_point)
|
| 1065 |
+
return waypoints
|
| 1066 |
+
|
| 1067 |
+
if self.waypoints_pred_head != "heatmap":
|
| 1068 |
+
traffic_feature = hs[:, :400]
|
| 1069 |
+
is_junction_feature = hs[:, 400]
|
| 1070 |
+
traffic_light_state_feature = hs[:, 400]
|
| 1071 |
+
stop_sign_feature = hs[:, 400]
|
| 1072 |
+
waypoints_feature = hs[:, 401:411]
|
| 1073 |
+
else:
|
| 1074 |
+
traffic_feature = hs[:, :400]
|
| 1075 |
+
is_junction_feature = hs[:, 400]
|
| 1076 |
+
traffic_light_state_feature = hs[:, 400]
|
| 1077 |
+
stop_sign_feature = hs[:, 400]
|
| 1078 |
+
waypoints_feature = hs[:, 401:405]
|
| 1079 |
+
|
| 1080 |
+
if self.waypoints_pred_head == "heatmap":
|
| 1081 |
+
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
| 1082 |
+
elif self.waypoints_pred_head == "gru":
|
| 1083 |
+
waypoints = self.waypoints_generator(waypoints_feature, target_point)
|
| 1084 |
+
elif self.waypoints_pred_head == "gru-command":
|
| 1085 |
+
waypoints = self.waypoints_generator(waypoints_feature, target_point, measurements)
|
| 1086 |
+
elif self.waypoints_pred_head == "linear":
|
| 1087 |
+
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
| 1088 |
+
elif self.waypoints_pred_head == "linear-sum":
|
| 1089 |
+
waypoints = self.waypoints_generator(waypoints_feature, measurements)
|
| 1090 |
+
|
| 1091 |
+
is_junction = self.junction_pred_head(is_junction_feature)
|
| 1092 |
+
traffic_light_state = self.traffic_light_pred_head(traffic_light_state_feature)
|
| 1093 |
+
stop_sign = self.stop_sign_head(stop_sign_feature)
|
| 1094 |
+
|
| 1095 |
+
velocity = measurements[:, 6:7].unsqueeze(-1)
|
| 1096 |
+
velocity = velocity.repeat(1, 400, 32)
|
| 1097 |
+
traffic_feature_with_vel = torch.cat([traffic_feature, velocity], dim=2)
|
| 1098 |
+
traffic = self.traffic_pred_head(traffic_feature_with_vel)
|
| 1099 |
+
return traffic, waypoints, is_junction, traffic_light_state, stop_sign, traffic_feature
|
| 1100 |
+
def load_pretrained(self, model_path, strict=False):
|
| 1101 |
+
"""
|
| 1102 |
+
تحميل الأ��زان المدربة مسبقاً - نسخة محسنة
|
| 1103 |
+
|
| 1104 |
+
Args:
|
| 1105 |
+
model_path (str): مسار ملف الأوزان
|
| 1106 |
+
strict (bool): إذا كان True، يتطلب تطابق تام للمفاتيح
|
| 1107 |
+
"""
|
| 1108 |
+
if not model_path or not Path(model_path).exists():
|
| 1109 |
+
logging.warning(f"ملف الأوزان غير موجود: {model_path}")
|
| 1110 |
+
logging.info("سيتم استخدام أوزان عشوائية")
|
| 1111 |
+
return False
|
| 1112 |
+
|
| 1113 |
+
try:
|
| 1114 |
+
logging.info(f"محاولة تحميل الأوزان من: {model_path}")
|
| 1115 |
+
|
| 1116 |
+
# تحميل الملف مع معالجة أنواع مختلفة من ملفات الحفظ
|
| 1117 |
+
checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
|
| 1118 |
+
|
| 1119 |
+
# استخراج state_dict من أنواع مختلفة من ملفات الحفظ
|
| 1120 |
+
if isinstance(checkpoint, dict):
|
| 1121 |
+
if 'model_state_dict' in checkpoint:
|
| 1122 |
+
state_dict = checkpoint['model_state_dict']
|
| 1123 |
+
logging.info("تم العثور على 'model_state_dict' في الملف")
|
| 1124 |
+
elif 'state_dict' in checkpoint:
|
| 1125 |
+
state_dict = checkpoint['state_dict']
|
| 1126 |
+
logging.info("تم العثور على 'state_dict' في الملف")
|
| 1127 |
+
elif 'model' in checkpoint:
|
| 1128 |
+
state_dict = checkpoint['model']
|
| 1129 |
+
logging.info("تم العثور على 'model' في الملف")
|
| 1130 |
+
else:
|
| 1131 |
+
state_dict = checkpoint
|
| 1132 |
+
logging.info("استخدام الملف كـ state_dict مباشرة")
|
| 1133 |
+
else:
|
| 1134 |
+
state_dict = checkpoint
|
| 1135 |
+
logging.info("استخدام الملف كـ state_dict مباشرة")
|
| 1136 |
+
|
| 1137 |
+
# تنظيف أسماء المفاتيح (إزالة 'module.' إذا كانت موجودة)
|
| 1138 |
+
clean_state_dict = OrderedDict()
|
| 1139 |
+
for k, v in state_dict.items():
|
| 1140 |
+
# إزالة 'module.' من بداية اسم المفتاح إذا كان موجوداً
|
| 1141 |
+
clean_key = k[7:] if k.startswith('module.') else k
|
| 1142 |
+
clean_state_dict[clean_key] = v
|
| 1143 |
+
|
| 1144 |
+
# تحميل الأوزان
|
| 1145 |
+
missing_keys, unexpected_keys = self.load_state_dict(clean_state_dict, strict=strict)
|
| 1146 |
+
|
| 1147 |
+
# تقرير حالة التحميل
|
| 1148 |
+
if missing_keys:
|
| 1149 |
+
logging.warning(f"مفاتيح مفقودة ({len(missing_keys)}): {missing_keys[:5]}..." if len(missing_keys) > 5 else f"مفاتيح مفقودة: {missing_keys}")
|
| 1150 |
+
|
| 1151 |
+
if unexpected_keys:
|
| 1152 |
+
logging.warning(f"مفاتيح غير متوقعة ({len(unexpected_keys)}): {unexpected_keys[:5]}..." if len(unexpected_keys) > 5 else f"مفاتيح غير متوقعة: {unexpected_keys}")
|
| 1153 |
+
|
| 1154 |
+
if not missing_keys and not unexpected_keys:
|
| 1155 |
+
logging.info("✅ تم تحميل جميع الأوزان بنجاح تام")
|
| 1156 |
+
elif not strict:
|
| 1157 |
+
logging.info("✅ تم تحميل الأوزان بنجاح (مع تجاهل عدم التطابق)")
|
| 1158 |
+
|
| 1159 |
+
return True
|
| 1160 |
+
|
| 1161 |
+
except Exception as e:
|
| 1162 |
+
logging.error(f"❌ خطأ في تحميل الأوزان: {str(e)}")
|
| 1163 |
+
logging.info("سيتم استخدام أوزان عشوائية")
|
| 1164 |
+
return False
|
| 1165 |
+
|
| 1166 |
+
|
| 1167 |
+
# ============================================================================
|
| 1168 |
+
# دوال مساعدة لتحميل النموذج
|
| 1169 |
+
# ============================================================================
|
| 1170 |
+
|
| 1171 |
+
def load_and_prepare_model(config, device):
|
| 1172 |
+
"""
|
| 1173 |
+
يقوم بإنشاء النموذج وتحميل الأوزان المدربة مسبقًا.
|
| 1174 |
+
|
| 1175 |
+
Args:
|
| 1176 |
+
config (dict): إعدادات النموذج والمسارات
|
| 1177 |
+
device (torch.device): الجهاز المستهدف (CPU/GPU)
|
| 1178 |
+
|
| 1179 |
+
Returns:
|
| 1180 |
+
InterfuserModel: النموذج المحمل
|
| 1181 |
+
"""
|
| 1182 |
+
try:
|
| 1183 |
+
# إنشاء النموذج
|
| 1184 |
+
model = InterfuserModel(**config.get('model_params', {})).to(device)
|
| 1185 |
+
logging.info(f"تم إنشاء النموذج على الجهاز: {device}")
|
| 1186 |
+
|
| 1187 |
+
# تحميل الأوزان إذا كان المسار محدد
|
| 1188 |
+
checkpoint_path = config.get('paths', {}).get('pretrained_weights')
|
| 1189 |
+
if checkpoint_path:
|
| 1190 |
+
success = model.load_pretrained(checkpoint_path, strict=False)
|
| 1191 |
+
if success:
|
| 1192 |
+
logging.info("✅ تم تحميل النموذج والأوزان بنجاح")
|
| 1193 |
+
else:
|
| 1194 |
+
logging.warning("⚠️ تم إنشاء النموذج بأوزان عشوائية")
|
| 1195 |
+
else:
|
| 1196 |
+
logging.info("لم يتم تحديد مسار الأوزان، سيتم استخدام أوزان عشوائية")
|
| 1197 |
+
|
| 1198 |
+
# وضع النموذج في وضع التقييم
|
| 1199 |
+
model.eval()
|
| 1200 |
+
|
| 1201 |
+
return model
|
| 1202 |
+
|
| 1203 |
+
except Exception as e:
|
| 1204 |
+
logging.error(f"خطأ في إنشاء النموذج: {str(e)}")
|
| 1205 |
+
raise
|
| 1206 |
+
|
| 1207 |
+
|
| 1208 |
+
def create_model_config(model_path="model/best_model.pth", **model_params):
|
| 1209 |
+
"""
|
| 1210 |
+
إنشاء إعدادات النموذج باستخدام الإعدادات الصحيحة من التدريب
|
| 1211 |
+
|
| 1212 |
+
Args:
|
| 1213 |
+
model_path (str): مسار ملف الأوزان
|
| 1214 |
+
**model_params: معاملات النموذج الإضافية
|
| 1215 |
+
|
| 1216 |
+
Returns:
|
| 1217 |
+
dict: إعدادات النموذج
|
| 1218 |
+
"""
|
| 1219 |
+
# الإعدادات الصحيحة من كونفيج التدريب الأصلي
|
| 1220 |
+
training_config_params = {
|
| 1221 |
+
"img_size": 224,
|
| 1222 |
+
"embed_dim": 256, # مهم: هذه القيمة من التدريب الأصلي
|
| 1223 |
+
"enc_depth": 6,
|
| 1224 |
+
"dec_depth": 6,
|
| 1225 |
+
"rgb_backbone_name": 'r50',
|
| 1226 |
+
"lidar_backbone_name": 'r18',
|
| 1227 |
+
"waypoints_pred_head": 'gru',
|
| 1228 |
+
"use_different_backbone": True,
|
| 1229 |
+
"with_lidar": False,
|
| 1230 |
+
"with_right_left_sensors": False,
|
| 1231 |
+
"with_center_sensor": False,
|
| 1232 |
+
|
| 1233 |
+
# إعدادات إضافية من الكونفيج الأصلي
|
| 1234 |
+
"multi_view_img_size": 112,
|
| 1235 |
+
"patch_size": 8,
|
| 1236 |
+
"in_chans": 3,
|
| 1237 |
+
"dim_feedforward": 2048,
|
| 1238 |
+
"normalize_before": False,
|
| 1239 |
+
"num_heads": 8,
|
| 1240 |
+
"dropout": 0.1,
|
| 1241 |
+
"end2end": False,
|
| 1242 |
+
"direct_concat": False,
|
| 1243 |
+
"separate_view_attention": False,
|
| 1244 |
+
"separate_all_attention": False,
|
| 1245 |
+
"freeze_num": -1,
|
| 1246 |
+
"traffic_pred_head_type": "det",
|
| 1247 |
+
"reverse_pos": True,
|
| 1248 |
+
"use_view_embed": False,
|
| 1249 |
+
"use_mmad_pretrain": None,
|
| 1250 |
+
}
|
| 1251 |
+
|
| 1252 |
+
# دمج المعاملات المخصصة مع الإعدادات من التدريب
|
| 1253 |
+
training_config_params.update(model_params)
|
| 1254 |
+
|
| 1255 |
+
config = {
|
| 1256 |
+
'model_params': training_config_params,
|
| 1257 |
+
'paths': {
|
| 1258 |
+
'pretrained_weights': model_path
|
| 1259 |
+
},
|
| 1260 |
+
|
| 1261 |
+
# إضافة إعدادات الشبكة من التدريب
|
| 1262 |
+
'grid_conf': {
|
| 1263 |
+
'h': 20, 'w': 20,
|
| 1264 |
+
'x_res': 1.0, 'y_res': 1.0,
|
| 1265 |
+
'y_min': 0.0, 'y_max': 20.0,
|
| 1266 |
+
'x_min': -10.0, 'x_max': 10.0,
|
| 1267 |
+
},
|
| 1268 |
+
|
| 1269 |
+
# معلومات إضافية عن التدريب
|
| 1270 |
+
'training_info': {
|
| 1271 |
+
'original_project': 'Interfuser_Finetuning',
|
| 1272 |
+
'run_name': 'Finetune_Focus_on_Detection_v5',
|
| 1273 |
+
'focus': 'traffic_detection_and_iou',
|
| 1274 |
+
'backbone': 'ResNet50 + ResNet18',
|
| 1275 |
+
'trained_on': 'PDM_Lite_Carla'
|
| 1276 |
+
}
|
| 1277 |
+
}
|
| 1278 |
+
|
| 1279 |
+
return config
|
| 1280 |
+
|
| 1281 |
+
|
| 1282 |
+
def get_training_config():
|
| 1283 |
+
"""
|
| 1284 |
+
إرجاع إعدادات التدريب الأصلية للمرجع
|
| 1285 |
+
هذه الإعدادات توضح كيف تم تدريب النموذج
|
| 1286 |
+
"""
|
| 1287 |
+
return {
|
| 1288 |
+
'project_info': {
|
| 1289 |
+
'project': 'Interfuser_Finetuning',
|
| 1290 |
+
'entity': None,
|
| 1291 |
+
'run_name': 'Finetune_Focus_on_Detection_v5'
|
| 1292 |
+
},
|
| 1293 |
+
'training': {
|
| 1294 |
+
'epochs': 50,
|
| 1295 |
+
'batch_size': 8,
|
| 1296 |
+
'num_workers': 2,
|
| 1297 |
+
'learning_rate': 1e-4, # معدل تعلم منخفض للـ Fine-tuning
|
| 1298 |
+
'weight_decay': 1e-2,
|
| 1299 |
+
'patience': 15,
|
| 1300 |
+
'clip_grad_norm': 1.0,
|
| 1301 |
+
},
|
| 1302 |
+
'loss_weights': {
|
| 1303 |
+
'iou': 2.0, # أولوية قصوى لدقة الصناديق
|
| 1304 |
+
'traffic_map': 25.0, # تركيز عالي على اكتشاف الكائنات
|
| 1305 |
+
'waypoints': 1.0, # مرجع أساسي
|
| 1306 |
+
'junction': 0.25, # مهام متقنة بالفعل
|
| 1307 |
+
'traffic_light': 0.5,
|
| 1308 |
+
'stop_sign': 0.25,
|
| 1309 |
+
},
|
| 1310 |
+
'data_split': {
|
| 1311 |
+
'strategy': 'interleaved',
|
| 1312 |
+
'segment_length': 100,
|
| 1313 |
+
'validation_frequency': 10,
|
| 1314 |
+
},
|
| 1315 |
+
'transforms': {
|
| 1316 |
+
'use_data_augmentation': False, # معطل للتركيز على البيانات الأصلية
|
| 1317 |
+
}
|
| 1318 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# مكتبات الخادم الأساسية
|
| 2 |
+
fastapi==0.104.1
|
| 3 |
+
uvicorn[standard]==0.24.0
|
| 4 |
+
python-multipart==0.0.6
|
| 5 |
+
pydantic==2.4.2
|
| 6 |
+
|
| 7 |
+
# مكتبات التعلم العميق
|
| 8 |
+
torch==2.1.0 --extra-index-url https://download.pytorch.org/whl/cpu
|
| 9 |
+
torchvision==0.16.0 --extra-index-url https://download.pytorch.org/whl/cpu
|
| 10 |
+
|
| 11 |
+
# مكتبات معالجة البيانات
|
| 12 |
+
numpy==1.24.3
|
| 13 |
+
opencv-python-headless==4.8.1.78
|
| 14 |
+
Pillow==10.0.1
|
| 15 |
+
|
| 16 |
+
# مكتبات إضافية للنموذج المحسن
|
| 17 |
+
tqdm==4.66.1
|
| 18 |
+
pathlib2==2.3.7
|
| 19 |
+
|
| 20 |
+
# مكتبات اختيارية (يمكن تثبيتها حسب الحاجة)
|
| 21 |
+
# wandb==0.15.12 # للمراقبة والتتبع
|
| 22 |
+
# timm==0.9.7 # لنماذج الرؤية الحاسوبية
|
simulation_modules.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# simulation_modules.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
import math
|
| 7 |
+
from collections import deque
|
| 8 |
+
from typing import List, Tuple, Dict, Any, Optional
|
| 9 |
+
|
| 10 |
+
# ================== Constants ==================
|
| 11 |
+
WAYPOINT_SCALE_FACTOR = 5.0
|
| 12 |
+
T1_FUTURE_TIME = 1.0
|
| 13 |
+
T2_FUTURE_TIME = 2.0
|
| 14 |
+
PIXELS_PER_METER = 8
|
| 15 |
+
MAX_DISTANCE = 32
|
| 16 |
+
IMG_SIZE = MAX_DISTANCE * PIXELS_PER_METER * 2
|
| 17 |
+
EGO_CAR_X = IMG_SIZE // 2
|
| 18 |
+
EGO_CAR_Y = IMG_SIZE - (4.0 * PIXELS_PER_METER)
|
| 19 |
+
|
| 20 |
+
COLORS = {
|
| 21 |
+
'vehicle': [255, 0, 0],
|
| 22 |
+
'pedestrian': [0, 255, 0],
|
| 23 |
+
'cyclist': [0, 0, 255],
|
| 24 |
+
'waypoint': [255, 255, 0],
|
| 25 |
+
'ego_car': [255, 255, 255]
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# ================== PID Controller ==================
|
| 29 |
+
class PIDController:
|
| 30 |
+
def __init__(self, K_P=1.0, K_I=0.0, K_D=0.0, n=20):
|
| 31 |
+
self._K_P = K_P
|
| 32 |
+
self._K_I = K_I
|
| 33 |
+
self._K_D = K_D
|
| 34 |
+
self._window = deque([0 for _ in range(n)], maxlen=n)
|
| 35 |
+
|
| 36 |
+
def step(self, error):
|
| 37 |
+
self._window.append(error)
|
| 38 |
+
if len(self._window) >= 2:
|
| 39 |
+
integral = np.mean(self._window)
|
| 40 |
+
derivative = self._window[-1] - self._window[-2]
|
| 41 |
+
else:
|
| 42 |
+
integral = derivative = 0.0
|
| 43 |
+
return self._K_P * error + self._K_I * integral + self._K_D * derivative
|
| 44 |
+
|
| 45 |
+
# ================== Helper Functions ==================
|
| 46 |
+
def ensure_rgb(image):
|
| 47 |
+
if len(image.shape) == 2:
|
| 48 |
+
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
| 49 |
+
elif image.shape[2] == 1:
|
| 50 |
+
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
| 51 |
+
return image
|
| 52 |
+
|
| 53 |
+
def add_rect(img, loc, ori, box, value, color):
|
| 54 |
+
center_x = int(loc[0] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
|
| 55 |
+
center_y = int(loc[1] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
|
| 56 |
+
size_px = (int(box[0] * PIXELS_PER_METER), int(box[1] * PIXELS_PER_METER))
|
| 57 |
+
angle_deg = -np.degrees(math.atan2(ori[1], ori[0]))
|
| 58 |
+
box_points = cv2.boxPoints(((center_x, center_y), size_px, angle_deg))
|
| 59 |
+
box_points = np.int32(box_points)
|
| 60 |
+
adjusted_color = [int(c * value) for c in color]
|
| 61 |
+
cv2.fillConvexPoly(img, box_points, adjusted_color)
|
| 62 |
+
return img
|
| 63 |
+
|
| 64 |
+
def render(traffic_grid, t=0):
|
| 65 |
+
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
|
| 66 |
+
counts = {'vehicles': 0, 'pedestrians': 0, 'cyclists': 0}
|
| 67 |
+
|
| 68 |
+
if isinstance(traffic_grid, torch.Tensor):
|
| 69 |
+
traffic_grid = traffic_grid.cpu().numpy()
|
| 70 |
+
|
| 71 |
+
h, w, c = traffic_grid.shape
|
| 72 |
+
for y in range(h):
|
| 73 |
+
for x in range(w):
|
| 74 |
+
for ch in range(c):
|
| 75 |
+
if traffic_grid[y, x, ch] > 0.1:
|
| 76 |
+
world_x = (x / w - 0.5) * MAX_DISTANCE * 2
|
| 77 |
+
world_y = (y / h - 0.5) * MAX_DISTANCE * 2
|
| 78 |
+
|
| 79 |
+
if ch < 3:
|
| 80 |
+
color = COLORS['vehicle']
|
| 81 |
+
counts['vehicles'] += 1
|
| 82 |
+
box_size = [2.0, 4.0]
|
| 83 |
+
elif ch < 5:
|
| 84 |
+
color = COLORS['pedestrian']
|
| 85 |
+
counts['pedestrians'] += 1
|
| 86 |
+
box_size = [0.8, 0.8]
|
| 87 |
+
else:
|
| 88 |
+
color = COLORS['cyclist']
|
| 89 |
+
counts['cyclists'] += 1
|
| 90 |
+
box_size = [1.2, 2.0]
|
| 91 |
+
|
| 92 |
+
img = add_rect(img, [world_x, world_y], [1.0, 0.0],
|
| 93 |
+
box_size, traffic_grid[y, x, ch], color)
|
| 94 |
+
|
| 95 |
+
return img, counts
|
| 96 |
+
|
| 97 |
+
def render_waypoints(waypoints, scale_factor=WAYPOINT_SCALE_FACTOR):
|
| 98 |
+
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
|
| 99 |
+
|
| 100 |
+
if isinstance(waypoints, torch.Tensor):
|
| 101 |
+
waypoints = waypoints.cpu().numpy()
|
| 102 |
+
|
| 103 |
+
scaled_waypoints = waypoints * scale_factor
|
| 104 |
+
|
| 105 |
+
for i, wp in enumerate(scaled_waypoints):
|
| 106 |
+
px = int(wp[0] * PIXELS_PER_METER + IMG_SIZE // 2)
|
| 107 |
+
py = int(wp[1] * PIXELS_PER_METER + IMG_SIZE // 2)
|
| 108 |
+
|
| 109 |
+
if 0 <= px < IMG_SIZE and 0 <= py < IMG_SIZE:
|
| 110 |
+
radius = max(3, 8 - i)
|
| 111 |
+
cv2.circle(img, (px, py), radius, COLORS['waypoint'], -1)
|
| 112 |
+
|
| 113 |
+
if i > 0:
|
| 114 |
+
prev_px = int(scaled_waypoints[i-1][0] * PIXELS_PER_METER + IMG_SIZE // 2)
|
| 115 |
+
prev_py = int(scaled_waypoints[i-1][1] * PIXELS_PER_METER + IMG_SIZE // 2)
|
| 116 |
+
if 0 <= prev_px < IMG_SIZE and 0 <= prev_py < IMG_SIZE:
|
| 117 |
+
cv2.line(img, (prev_px, prev_py), (px, py), COLORS['waypoint'], 2)
|
| 118 |
+
|
| 119 |
+
return img
|
| 120 |
+
|
| 121 |
+
def render_self_car(img):
|
| 122 |
+
car_pos = [0, -4.0]
|
| 123 |
+
car_ori = [1.0, 0.0]
|
| 124 |
+
car_size = [2.0, 4.5]
|
| 125 |
+
return add_rect(img, car_pos, car_ori, car_size, 1.0, COLORS['ego_car'])
|
| 126 |
+
|
| 127 |
+
# ================== Tracker Classes ==================
|
| 128 |
+
class TrackedObject:
|
| 129 |
+
def __init__(self, obj_id: int):
|
| 130 |
+
self.id = obj_id
|
| 131 |
+
self.last_step = 0
|
| 132 |
+
self.last_pos = [0.0, 0.0]
|
| 133 |
+
self.historical_pos = []
|
| 134 |
+
self.historical_steps = []
|
| 135 |
+
self.velocity = [0.0, 0.0]
|
| 136 |
+
self.confidence = 1.0
|
| 137 |
+
|
| 138 |
+
def update(self, step: int, obj_info: List[float]):
|
| 139 |
+
self.last_step = step
|
| 140 |
+
self.last_pos = obj_info[:2]
|
| 141 |
+
self.historical_pos.append(obj_info[:2])
|
| 142 |
+
self.historical_steps.append(step)
|
| 143 |
+
|
| 144 |
+
if len(self.historical_pos) >= 2:
|
| 145 |
+
dt = self.historical_steps[-1] - self.historical_steps[-2]
|
| 146 |
+
if dt > 0:
|
| 147 |
+
dx = self.historical_pos[-1][0] - self.historical_pos[-2][0]
|
| 148 |
+
dy = self.historical_pos[-1][1] - self.historical_pos[-2][1]
|
| 149 |
+
self.velocity = [dx/dt, dy/dt]
|
| 150 |
+
|
| 151 |
+
def predict_position(self, future_time: float) -> List[float]:
|
| 152 |
+
predicted_x = self.last_pos[0] + self.velocity[0] * future_time
|
| 153 |
+
predicted_y = self.last_pos[1] + self.velocity[1] * future_time
|
| 154 |
+
return [predicted_x, predicted_y]
|
| 155 |
+
|
| 156 |
+
def is_alive(self, current_step: int, max_age: int = 5) -> bool:
|
| 157 |
+
return (current_step - self.last_step) <= max_age
|
| 158 |
+
|
| 159 |
+
class Tracker:
|
| 160 |
+
def __init__(self, frequency: int = 10):
|
| 161 |
+
self.tracks: List[TrackedObject] = []
|
| 162 |
+
self.frequency = frequency
|
| 163 |
+
self.next_id = 0
|
| 164 |
+
self.current_step = 0
|
| 165 |
+
|
| 166 |
+
def update_and_predict(self, detections: List[Dict], step: int) -> np.ndarray:
|
| 167 |
+
self.current_step = step
|
| 168 |
+
|
| 169 |
+
for detection in detections:
|
| 170 |
+
pos = detection.get('position', [0, 0])
|
| 171 |
+
feature = detection.get('feature', 0.5)
|
| 172 |
+
|
| 173 |
+
best_match = None
|
| 174 |
+
min_distance = float('inf')
|
| 175 |
+
|
| 176 |
+
for track in self.tracks:
|
| 177 |
+
if track.is_alive(step):
|
| 178 |
+
distance = np.linalg.norm(np.array(pos) - np.array(track.last_pos))
|
| 179 |
+
if distance < min_distance and distance < 2.0:
|
| 180 |
+
min_distance = distance
|
| 181 |
+
best_match = track
|
| 182 |
+
|
| 183 |
+
if best_match:
|
| 184 |
+
best_match.update(step, pos + [feature])
|
| 185 |
+
else:
|
| 186 |
+
new_track = TrackedObject(self.next_id)
|
| 187 |
+
new_track.update(step, pos + [feature])
|
| 188 |
+
self.tracks.append(new_track)
|
| 189 |
+
self.next_id += 1
|
| 190 |
+
|
| 191 |
+
self.tracks = [t for t in self.tracks if t.is_alive(step)]
|
| 192 |
+
return self._generate_prediction_grid()
|
| 193 |
+
|
| 194 |
+
def _generate_prediction_grid(self) -> np.ndarray:
|
| 195 |
+
grid = np.zeros((20, 20, 7), dtype=np.float32)
|
| 196 |
+
|
| 197 |
+
for track in self.tracks:
|
| 198 |
+
if track.is_alive(self.current_step):
|
| 199 |
+
current_pos = track.last_pos
|
| 200 |
+
future_pos_t1 = track.predict_position(T1_FUTURE_TIME)
|
| 201 |
+
future_pos_t2 = track.predict_position(T2_FUTURE_TIME)
|
| 202 |
+
|
| 203 |
+
for pos in [current_pos, future_pos_t1, future_pos_t2]:
|
| 204 |
+
grid_x = int((pos[0] / (MAX_DISTANCE * 2) + 0.5) * 20)
|
| 205 |
+
grid_y = int((pos[1] / (MAX_DISTANCE * 2) + 0.5) * 20)
|
| 206 |
+
|
| 207 |
+
if 0 <= grid_x < 20 and 0 <= grid_y < 20:
|
| 208 |
+
channel = 0
|
| 209 |
+
grid[grid_y, grid_x, channel] = max(grid[grid_y, grid_x, channel], track.confidence)
|
| 210 |
+
|
| 211 |
+
return grid
|
| 212 |
+
|
| 213 |
+
# ================== Controller Classes ==================
|
| 214 |
+
class ControllerConfig:
|
| 215 |
+
def __init__(self):
|
| 216 |
+
self.turn_KP = 1.0
|
| 217 |
+
self.turn_KI = 0.1
|
| 218 |
+
self.turn_KD = 0.1
|
| 219 |
+
self.turn_n = 20
|
| 220 |
+
|
| 221 |
+
self.speed_KP = 0.5
|
| 222 |
+
self.speed_KI = 0.05
|
| 223 |
+
self.speed_KD = 0.1
|
| 224 |
+
self.speed_n = 20
|
| 225 |
+
|
| 226 |
+
self.max_speed = 6.0
|
| 227 |
+
self.max_throttle = 0.75
|
| 228 |
+
self.clip_delta = 0.25
|
| 229 |
+
|
| 230 |
+
self.brake_speed = 0.4
|
| 231 |
+
self.brake_ratio = 1.1
|
| 232 |
+
|
| 233 |
+
class InterfuserController:
|
| 234 |
+
def __init__(self, config: ControllerConfig):
|
| 235 |
+
self.config = config
|
| 236 |
+
self.turn_controller = PIDController(config.turn_KP, config.turn_KI, config.turn_KD, config.turn_n)
|
| 237 |
+
self.speed_controller = PIDController(config.speed_KP, config.speed_KI, config.speed_KD, config.speed_n)
|
| 238 |
+
self.last_steer = 0.0
|
| 239 |
+
self.last_throttle = 0.0
|
| 240 |
+
self.target_speed = 3.0
|
| 241 |
+
|
| 242 |
+
def run_step(self, current_speed: float, waypoints: np.ndarray,
|
| 243 |
+
junction: float, traffic_light_state: float,
|
| 244 |
+
stop_sign: float, meta_data: Dict) -> Tuple[float, float, bool, str]:
|
| 245 |
+
|
| 246 |
+
if isinstance(waypoints, torch.Tensor):
|
| 247 |
+
waypoints = waypoints.cpu().numpy()
|
| 248 |
+
|
| 249 |
+
if len(waypoints) > 1:
|
| 250 |
+
dx = waypoints[1][0] - waypoints[0][0]
|
| 251 |
+
dy = waypoints[1][1] - waypoints[0][1]
|
| 252 |
+
target_yaw = math.atan2(dy, dx)
|
| 253 |
+
steer = self.turn_controller.step(target_yaw)
|
| 254 |
+
else:
|
| 255 |
+
steer = 0.0
|
| 256 |
+
|
| 257 |
+
steer = np.clip(steer, -1.0, 1.0)
|
| 258 |
+
|
| 259 |
+
target_speed = self.target_speed
|
| 260 |
+
if junction > 0.5:
|
| 261 |
+
target_speed *= 0.7
|
| 262 |
+
if abs(steer) > 0.3:
|
| 263 |
+
target_speed *= 0.8
|
| 264 |
+
|
| 265 |
+
speed_error = target_speed - current_speed
|
| 266 |
+
throttle = self.speed_controller.step(speed_error)
|
| 267 |
+
throttle = np.clip(throttle, 0.0, self.config.max_throttle)
|
| 268 |
+
|
| 269 |
+
brake = False
|
| 270 |
+
if traffic_light_state > 0.5 or stop_sign > 0.5 or current_speed > self.config.max_speed:
|
| 271 |
+
brake = True
|
| 272 |
+
throttle = 0.0
|
| 273 |
+
|
| 274 |
+
self.last_steer = steer
|
| 275 |
+
self.last_throttle = throttle
|
| 276 |
+
|
| 277 |
+
metadata = f"Speed:{current_speed:.1f} Target:{target_speed:.1f} Junction:{junction:.2f}"
|
| 278 |
+
|
| 279 |
+
return steer, throttle, brake, metadata
|
| 280 |
+
|
| 281 |
+
# ================== Display Interface ==================
|
| 282 |
+
class DisplayInterface:
|
| 283 |
+
def __init__(self, width: int = 1200, height: int = 600):
|
| 284 |
+
self._width = width
|
| 285 |
+
self._height = height
|
| 286 |
+
self.camera_width = width // 2
|
| 287 |
+
self.camera_height = height
|
| 288 |
+
self.map_width = width // 2
|
| 289 |
+
self.map_height = height // 3
|
| 290 |
+
|
| 291 |
+
def run_interface(self, data: Dict[str, Any]) -> np.ndarray:
|
| 292 |
+
dashboard = np.zeros((self._height, self._width, 3), dtype=np.uint8)
|
| 293 |
+
|
| 294 |
+
# Camera view
|
| 295 |
+
camera_view = data.get('camera_view')
|
| 296 |
+
if camera_view is not None:
|
| 297 |
+
camera_resized = cv2.resize(camera_view, (self.camera_width, self.camera_height))
|
| 298 |
+
dashboard[:, :self.camera_width] = camera_resized
|
| 299 |
+
|
| 300 |
+
# Maps
|
| 301 |
+
map_start_x = self.camera_width
|
| 302 |
+
|
| 303 |
+
map_t0 = data.get('map_t0')
|
| 304 |
+
if map_t0 is not None:
|
| 305 |
+
map_resized = cv2.resize(map_t0, (self.map_width, self.map_height))
|
| 306 |
+
dashboard[:self.map_height, map_start_x:] = map_resized
|
| 307 |
+
cv2.putText(dashboard, "Current (t=0)", (map_start_x + 10, 30),
|
| 308 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
| 309 |
+
|
| 310 |
+
map_t1 = data.get('map_t1')
|
| 311 |
+
if map_t1 is not None:
|
| 312 |
+
map_resized = cv2.resize(map_t1, (self.map_width, self.map_height))
|
| 313 |
+
y_start = self.map_height
|
| 314 |
+
dashboard[y_start:y_start + self.map_height, map_start_x:] = map_resized
|
| 315 |
+
cv2.putText(dashboard, f"Future (t={T1_FUTURE_TIME}s)",
|
| 316 |
+
(map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX,
|
| 317 |
+
0.7, (255, 255, 255), 2)
|
| 318 |
+
|
| 319 |
+
map_t2 = data.get('map_t2')
|
| 320 |
+
if map_t2 is not None:
|
| 321 |
+
map_resized = cv2.resize(map_t2, (self.map_width, self.map_height))
|
| 322 |
+
y_start = self.map_height * 2
|
| 323 |
+
dashboard[y_start:, map_start_x:] = map_resized
|
| 324 |
+
cv2.putText(dashboard, f"Future (t={T2_FUTURE_TIME}s)",
|
| 325 |
+
(map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX,
|
| 326 |
+
0.7, (255, 255, 255), 2)
|
| 327 |
+
|
| 328 |
+
# Text info
|
| 329 |
+
text_info = data.get('text_info', {})
|
| 330 |
+
y_offset = 50
|
| 331 |
+
for key, value in text_info.items():
|
| 332 |
+
cv2.putText(dashboard, value, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX,
|
| 333 |
+
0.6, (0, 255, 0), 2)
|
| 334 |
+
y_offset += 30
|
| 335 |
+
|
| 336 |
+
return dashboard
|