File size: 24,394 Bytes
7b0dd2f
 
57b9764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0dd2f
 
 
 
 
57b9764
7b0dd2f
8176c5b
57b9764
 
7b0dd2f
57b9764
 
 
 
 
7b0dd2f
 
57b9764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0dd2f
57b9764
7b0dd2f
 
57b9764
 
7b0dd2f
 
57b9764
 
 
 
7b0dd2f
57b9764
 
 
7b0dd2f
57b9764
 
 
 
 
 
 
 
 
7b0dd2f
 
 
 
 
 
57b9764
 
 
 
7b0dd2f
57b9764
7b0dd2f
57b9764
 
 
 
7b0dd2f
57b9764
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0dd2f
57b9764
 
 
 
 
7b0dd2f
 
 
 
57b9764
 
7b0dd2f
57b9764
 
 
 
 
7b0dd2f
57b9764
7b0dd2f
57b9764
7b0dd2f
57b9764
 
 
 
7b0dd2f
 
57b9764
 
 
 
 
 
 
 
 
 
 
 
 
7b0dd2f
57b9764
 
 
 
7b0dd2f
57b9764
 
 
 
 
 
 
 
 
8176c5b
 
7b0dd2f
57b9764
 
7b0dd2f
57b9764
 
 
7b0dd2f
 
57b9764
 
 
7b0dd2f
57b9764
 
7b0dd2f
57b9764
 
 
 
 
7b0dd2f
57b9764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0dd2f
57b9764
 
 
 
7b0dd2f
57b9764
 
 
 
 
7b0dd2f
 
57b9764
 
 
 
 
 
 
 
 
 
7b0dd2f
57b9764
7b0dd2f
57b9764
 
7b0dd2f
57b9764
 
 
 
 
 
 
7b0dd2f
57b9764
 
 
 
 
 
 
7b0dd2f
57b9764
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# app.py - InterFuser Self-Driving API Server

import uuid
import base64
import cv2
# import torch
# import numpy as np
# from fastapi import FastAPI, HTTPException
# from fastapi.responses import HTMLResponse
# from pydantic import BaseModel
# from torchvision import transforms
# from typing import List, Dict, Any, Optional
# import logging

# # استيراد من ملفاتنا المحلية
# from model_definition import InterfuserModel, load_and_prepare_model, create_model_config
# from simulation_modules import (
#     InterfuserController, ControllerConfig, Tracker, DisplayInterface, 
#     render, render_waypoints, render_self_car, WAYPOINT_SCALE_FACTOR, 
#     T1_FUTURE_TIME, T2_FUTURE_TIME
# )

# # إعداد التسجيل
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # ================== إعدادات عامة وتحميل النموذج ==================
# app = FastAPI(
#     title="Baseer Self-Driving API",
#     description="API للقيادة الذاتية باستخدام نموذج InterFuser",
#     version="1.0.0"
# )

# device = torch.device("cpu")
# logger.info(f"Using device: {device}")

# # تحميل النموذج باستخدام الدالة المحسنة
# try:
#     # إنشاء إعدادات النموذج باستخدام الإعدادات الصحيحة من التدريب
#     model_config = create_model_config(
#         model_path="model/best_model.pth"
#         # الإعدادات الصحيحة من التدريب ستطبق تلقائياً:
#         # embed_dim=256, rgb_backbone_name='r50', waypoints_pred_head='gru'
#         # with_lidar=False, with_right_left_sensors=False, with_center_sensor=False
#     )
    
#     # تحميل النموذج مع الأوزان
#     model = load_and_prepare_model(model_config, device)
#     logger.info("✅ تم تحميل النموذج بنجاح")
    
# except Exception as e:
#     logger.error(f"❌ خطأ في تحميل النموذج: {e}")
#     logger.info("🔄 محاولة إنشاء نموذج بأوزان عشوائية...")
#     try:
#         model = InterfuserModel()
#         model.to(device)
#         model.eval()
#         logger.warning("⚠️ تم إنشاء النموذج بأوزان عشوائية")
#     except Exception as e2:
#         logger.error(f"❌ فشل في إنشاء النموذج: {e2}")
#         model = None

# # تهيئة واجهة العرض
# display = DisplayInterface()

# # قاموس لتخزين جلسات المستخدمين
# SESSIONS: Dict[str, Dict] = {}

# # ================== هياكل بيانات Pydantic ==================
# class Measurements(BaseModel):
#     pos: List[float] = [0.0, 0.0]  # [x, y] position
#     theta: float = 0.0              # orientation angle
#     speed: float = 0.0              # current speed
#     steer: float = 0.0              # current steering
#     throttle: float = 0.0           # current throttle
#     brake: bool = False             # brake status
#     command: int = 4                # driving command (4 = FollowLane)
#     target_point: List[float] = [0.0, 0.0]  # target point [x, y]

# class ModelOutputs(BaseModel):
#     traffic: List[List[List[float]]]  # 20x20x7 grid
#     waypoints: List[List[float]]      # Nx2 waypoints
#     is_junction: float
#     traffic_light_state: float
#     stop_sign: float

# class ControlCommands(BaseModel):
#     steer: float
#     throttle: float
#     brake: bool

# class RunStepInput(BaseModel):
#     session_id: str
#     image_b64: str
#     measurements: Measurements

# class RunStepOutput(BaseModel):
#     model_outputs: ModelOutputs
#     control_commands: ControlCommands
#     dashboard_image_b64: str

# class SessionResponse(BaseModel):
#     session_id: str
#     message: str

# # ================== دوال المساعدة ==================
# def get_image_transform():
#     """إنشاء تحويلات الصورة كما في PDMDataset"""
#     return transforms.Compose([
#         transforms.ToTensor(),
#         transforms.Resize((224, 224), antialias=True),
#         transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#     ])

# # إنشاء كائن التحويل مرة واحدة
# image_transform = get_image_transform()

# def preprocess_input(frame_rgb: np.ndarray, measurements: Measurements, device: torch.device) -> Dict[str, torch.Tensor]:
#     """
#     تحاكي ما يفعله PDMDataset.__getitem__ لإنشاء دفعة (batch) واحدة.
#     """
#     # 1. معالجة الصورة الرئيسية
#     from PIL import Image
#     if isinstance(frame_rgb, np.ndarray):
#         frame_rgb = Image.fromarray(frame_rgb)
    
#     image_tensor = image_transform(frame_rgb).unsqueeze(0).to(device)  # إضافة بُعد الدفعة

#     # 2. إنشاء مدخلات الكاميرات الأخرى عن طريق الاستنساخ
#     batch = {
#         'rgb': image_tensor,
#         'rgb_left': image_tensor.clone(),
#         'rgb_right': image_tensor.clone(),
#         'rgb_center': image_tensor.clone(),
#     }

#     # 3. إنشاء مدخل ليدار وهمي (أصفار)
#     batch['lidar'] = torch.zeros(1, 3, 224, 224, dtype=torch.float32).to(device)

#     # 4. تجميع القياسات بنفس ترتيب PDMDataset
#     m = measurements
#     measurements_tensor = torch.tensor([[
#         m.pos[0], m.pos[1], m.theta,
#         m.steer, m.throttle, float(m.brake),
#         m.speed, float(m.command)
#     ]], dtype=torch.float32).to(device)
#     batch['measurements'] = measurements_tensor

#     # 5. إنشاء نقطة هدف
#     batch['target_point'] = torch.tensor([m.target_point], dtype=torch.float32).to(device)
    
#     # لا نحتاج إلى قيم ground truth (gt_*) أثناء التنبؤ
#     return batch

# def decode_base64_image(image_b64: str) -> np.ndarray:
#     """
#     فك تشفير صورة Base64
#     """
#     try:
#         image_bytes = base64.b64decode(image_b64)
#         nparr = np.frombuffer(image_bytes, np.uint8)
#         image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
#         return image
#     except Exception as e:
#         raise HTTPException(status_code=400, detail=f"Invalid image format: {str(e)}")

# def encode_image_to_base64(image: np.ndarray) -> str:
#     """
#     تشفير صورة إلى Base64
#     """
#     _, buffer = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, 85])
#     return base64.b64encode(buffer).decode('utf-8')

# # ================== نقاط نهاية الـ API ==================
# @app.get("/", response_class=HTMLResponse)
# async def root():
#     """
#     الصفحة الرئيسية للـ API
#     """
#     html_content = f"""
#     <!DOCTYPE html>
#     <html dir="rtl" lang="ar">
#     <head>
#         <meta charset="UTF-8">
#         <meta name="viewport" content="width=device-width, initial-scale=1.0">
#         <title>🚗 Baseer Self-Driving API</title>
#         <style>
#             * {{
#                 margin: 0;
#                 padding: 0;
#                 box-sizing: border-box;
#             }}
#             body {{
#                 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
#                 background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
#                 min-height: 100vh;
#                 display: flex;
#                 align-items: center;
#                 justify-content: center;
#                 padding: 20px;
#             }}
#             .container {{
#                 background: rgba(255, 255, 255, 0.95);
#                 backdrop-filter: blur(10px);
#                 border-radius: 20px;
#                 padding: 40px;
#                 box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
#                 text-align: center;
#                 max-width: 600px;
#                 width: 100%;
#             }}
#             .logo {{
#                 font-size: 4rem;
#                 margin-bottom: 20px;
#                 animation: bounce 2s infinite;
#             }}
#             @keyframes bounce {{
#                 0%, 20%, 50%, 80%, 100% {{ transform: translateY(0); }}
#                 40% {{ transform: translateY(-10px); }}
#                 60% {{ transform: translateY(-5px); }}
#             }}
#             h1 {{
#                 color: #333;
#                 margin-bottom: 10px;
#                 font-size: 2.5rem;
#             }}
#             .subtitle {{
#                 color: #666;
#                 margin-bottom: 30px;
#                 font-size: 1.2rem;
#             }}
#             .status {{
#                 display: inline-block;
#                 background: #4CAF50;
#                 color: white;
#                 padding: 8px 16px;
#                 border-radius: 20px;
#                 margin: 10px 0;
#                 font-weight: bold;
#             }}
#             .stats {{
#                 display: grid;
#                 grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
#                 gap: 20px;
#                 margin: 30px 0;
#             }}
#             .stat-card {{
#                 background: #f8f9fa;
#                 padding: 20px;
#                 border-radius: 15px;
#                 border-left: 4px solid #667eea;
#             }}
#             .stat-number {{
#                 font-size: 2rem;
#                 font-weight: bold;
#                 color: #667eea;
#             }}
#             .stat-label {{
#                 color: #666;
#                 margin-top: 5px;
#             }}
#             .buttons {{
#                 display: flex;
#                 gap: 15px;
#                 justify-content: center;
#                 flex-wrap: wrap;
#                 margin-top: 30px;
#             }}
#             .btn {{
#                 display: inline-block;
#                 padding: 12px 24px;
#                 border-radius: 25px;
#                 text-decoration: none;
#                 font-weight: bold;
#                 transition: all 0.3s ease;
#                 border: none;
#                 cursor: pointer;
#             }}
#             .btn-primary {{
#                 background: #667eea;
#                 color: white;
#             }}
#             .btn-secondary {{
#                 background: #6c757d;
#                 color: white;
#             }}
#             .btn:hover {{
#                 transform: translateY(-2px);
#                 box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2);
#             }}
#             .features {{
#                 text-align: right;
#                 margin-top: 30px;
#                 padding: 20px;
#                 background: #f8f9fa;
#                 border-radius: 15px;
#             }}
#             .features h3 {{
#                 color: #333;
#                 margin-bottom: 15px;
#             }}
#             .features ul {{
#                 list-style: none;
#                 padding: 0;
#             }}
#             .features li {{
#                 padding: 5px 0;
#                 color: #666;
#             }}
#             .features li:before {{
#                 content: "✅ ";
#                 margin-left: 10px;
#             }}
#         </style>
#     </head>
#     <body>
#         <div class="container">
#             <div class="logo">🚗</div>
#             <h1>Baseer Self-Driving API</h1>
#             <p class="subtitle">نظام القيادة الذاتية المتقدم</p>
            
#             <div class="status">🟢 يعمل بنجاح</div>
            
#             <div class="stats">
#                 <div class="stat-card">
#                     <div class="stat-number">{len(SESSIONS)}</div>
#                     <div class="stat-label">الجلسات النشطة</div>
#                 </div>
#                 <div class="stat-card">
#                     <div class="stat-number">v1.0</div>
#                     <div class="stat-label">الإصدار</div>
#                 </div>
#                 <div class="stat-card">
#                     <div class="stat-number">FastAPI</div>
#                     <div class="stat-label">التقنية</div>
#                 </div>
#             </div>
            
#             <div class="buttons">
#                 <a href="/docs" class="btn btn-primary">📚 توثيق API</a>
#                 <a href="/sessions" class="btn btn-secondary">📊 الجلسات</a>
#             </div>
            
#             <div class="features">
#                 <h3>🌟 الميزات الرئيسية</h3>
#                 <ul>
#                     <li>نموذج InterFuser للقيادة الذاتية</li>
#                     <li>معالجة الصور في الوقت الفعلي</li>
#                     <li>اكتشاف الكائنات المرورية</li>
#                     <li>تحديد المسارات الذكية</li>
#                     <li>واجهة RESTful سهلة الاستخدام</li>
#                     <li>إدارة جلسات متعددة</li>
#                 </ul>
#             </div>
#         </div>
#     </body>
#     </html>
#     """
#     return html_content

import uuid
import base64
import cv2
import torch
import numpy as np
import logging
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Tuple

# ==============================================================================
# 1. استيراد كل مكونات المشروع التي قمنا بتطويرها
#    (تأكد من أن هذه الملفات موجودة في نفس المجلد)
# ==============================================================================
# من ملف النموذج (يحتوي على كلاس Interfuser والدوال المساعدة)
from model_definition import InterfuserModel, load_and_prepare_model, create_model_config

# من ملفات التحكم والعرض
from simulation_modules import InterfuserController, Tracker
from simulation_modules import DisplayInterface, render_bev, unnormalize_image, DisplayConfig
# # استيراد من ملفاتنا المحلية
# from model_definition import InterfuserModel, load_and_prepare_model, create_model_config
# from simulation_modules import (
#     InterfuserController, ControllerConfig, Tracker, DisplayInterface, 
#     render, render_waypoints, render_self_car, WAYPOINT_SCALE_FACTOR, 
#     T1_FUTURE_TIME, T2_FUTURE_TIME
# )
# ==============================================================================
# 2. إعدادات عامة وتطبيق FastAPI
# ==============================================================================
# إعداد التسجيل (Logging)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# تهيئة تطبيق FastAPI
app = FastAPI(
    title="Baseer Self-Driving API",
    description="An advanced API for the InterFuser self-driving model, providing real-time control commands and scene analysis.",
    version="1.1.0"
)

# متغيرات عامة سيتم تهيئتها عند بدء التشغيل
MODEL: Interfuser = None
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SESSIONS: Dict[str, Dict] = {} # قاموس لتخزين حالة الجلسات النشطة

# ==============================================================================
# 3. تعريف نماذج البيانات (Pydantic Models) للـ API
# ==============================================================================
class Measurements(BaseModel):
    pos_global: Tuple[float, float] = Field(..., example=(0.0, 0.0), description="Global [X, Y] position of the vehicle.")
    theta: float = Field(..., example=0.0, description="Global orientation angle of the vehicle in radians.")
    speed: float = Field(..., example=0.0, description="Current speed in m/s.")
    target_point: Tuple[float, float] = Field(..., example=(10.0, 0.0), description="Target point relative to the vehicle.")

class RunStepRequest(BaseModel):
    session_id: str
    image_b64: str = Field(..., description="Base64 encoded string of the vehicle's front camera view (BGR format).")
    measurements: Measurements

class ControlCommands(BaseModel):
    steer: float
    throttle: float
    brake: bool

class SceneAnalysis(BaseModel):
    is_junction: float
    traffic_light_state: float
    stop_sign: float

class RunStepResponse(BaseModel):
    control_commands: ControlCommands
    scene_analysis: SceneAnalysis
    predicted_waypoints: List[Tuple[float, float]]
    dashboard_b64: str = Field(..., description="Base64 encoded string of the comprehensive dashboard view.")
    reason: str = Field(..., description="The reason for the current control action (e.g., 'Following ID 12', 'Red Light').")

# ==============================================================================
# 4. دوال مساعدة (Helpers)
# ==============================================================================
def b64_to_cv2(b64_string: str) -> np.ndarray:
    try:
        img_bytes = base64.b64decode(b64_string)
        img_array = np.frombuffer(img_bytes, dtype=np.uint8)
        return cv2.imdecode(img_array, cv2.IMREAD_COLOR)
    except Exception:
        raise HTTPException(status_code=400, detail="Invalid Base64 image string.")

def cv2_to_b64(img: np.ndarray) -> str:
    _, buffer = cv2.imencode('.jpg', img)
    return base64.b64encode(buffer).decode('utf-8')

def prepare_model_input(image: np.ndarray, measurements: Measurements) -> Dict[str, torch.Tensor]:
    """
    إعداد دفعة (batch of 1) لتمريرها إلى النموذج.
    """
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize((224, 224), antialias=True),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image_tensor = transform(image_rgb).unsqueeze(0).to(DEVICE)

    measurements_tensor = torch.tensor([[
        measurements.pos_global[0], measurements.pos_global[1], measurements.theta,
        0.0, 0.0, 0.0, # Steer, throttle, brake (not used by model)
        measurements.speed, 4.0 # Command (default to FollowLane)
    ]], dtype=torch.float32).to(DEVICE)
    
    target_point_tensor = torch.tensor([measurements.target_point], dtype=torch.float32).to(DEVICE)

    return {
        'rgb': image_tensor,
        'rgb_left': image_tensor.clone(), 'rgb_right': image_tensor.clone(), 'rgb_center': image_tensor.clone(),
        'measurements': measurements_tensor,
        'target_point': target_point_tensor,
        'lidar': torch.zeros_like(image_tensor)
    }

# ==============================================================================
# 5. أحداث دورة حياة التطبيق (Startup/Shutdown)
# ==============================================================================
@app.on_event("startup")
async def startup_event():
    global MODEL
    logging.info("🚗 Server starting up...")
    logging.info(f"Using device: {DEVICE}")
    MODEL = load_and_prepare_model(DEVICE)
    if MODEL:
        logging.info("✅ Model loaded successfully. Server is ready!")
    else:
        logging.error("❌ CRITICAL: Model could not be loaded. The API will not function correctly.")

# ==============================================================================
# 6. نقاط النهاية الرئيسية (API Endpoints)
# ==============================================================================
@app.get("/", response_class=HTMLResponse, include_in_schema=False)
async def root():
    # هذا يعرض صفحة رئيسية بسيطة وجميلة للمستخدمين
    return """
    <html>
        <head><title>Baseer API</title></head>
        <body style='font-family: sans-serif; text-align: center; padding-top: 50px;'>
            <h1>🚗 Baseer Self-Driving API</h1>
            <p>Welcome! The API is running.</p>
            <p>Navigate to <a href="/docs">/docs</a> for the interactive API documentation.</p>
        </body>
    </html>
    """

@app.post("/start_session", summary="Start a new driving session", tags=["Session Management"])
def start_session():
    session_id = str(uuid.uuid4())
    config = create_model_config()
    controller_params = config.get('controller_params', {})
    controller_params.update({'frequency': 10.0}) # Set default frequency
    
    SESSIONS[session_id] = {
        'tracker': Tracker(grid_conf=config['grid_conf']),
        'controller': InterfuserController({'controller_params': controller_params, 'grid_conf': config['grid_conf']}),
        'frame_num': 0
    }
    logging.info(f"New session started: {session_id}")
    return {"session_id": session_id}

@app.post("/run_step", response_model=RunStepResponse, summary="Process a single simulation step", tags=["Core"])
@torch.no_grad()
def run_step(request: RunStepRequest):
    if MODEL is None:
        raise HTTPException(status_code=503, detail="Model is not available.")
    
    session = SESSIONS.get(request.session_id)
    if not session:
        raise HTTPException(status_code=404, detail="Session ID not found.")

    # --- 1. الإدراك (Perception) ---
    image = b64_to_cv2(request.image_b64)
    model_input = prepare_model_input(image, request.measurements)
    traffic, waypoints, junc, light, stop, _ = MODEL(model_input)

    # --- 2. معالجة مخرجات النموذج ---
    traffic_processed = torch.cat([torch.sigmoid(traffic[0][:, 0:1]), traffic[0][:, 1:]], dim=1)
    traffic_np = traffic_processed.cpu().numpy().reshape(20, 20, -1)
    waypoints_np = waypoints[0].cpu().numpy()
    junction_prob = torch.softmax(junc, dim=1)[0, 1].item()
    light_prob = torch.softmax(light, dim=1)[0, 1].item()
    stop_prob = torch.softmax(stop, dim=1)[0, 1].item()
    
    # --- 3. التتبع والتحكم ---
    ego_pos = np.array(request.measurements.pos_global)
    ego_theta = request.measurements.theta
    frame_num = session['frame_num']
    
    active_tracks = session['tracker'].process_frame(traffic_np, ego_pos, ego_theta, frame_num)
    steer, throttle, brake, ctrl_info = session['controller'].run_step(
        speed=request.measurements.speed, waypoints=torch.from_numpy(waypoints_np),
        junction=junction_prob, traffic_light=light_prob, stop_sign=stop_prob,
        bev_map=traffic_np, ego_pos=ego_pos, ego_theta=ego_theta, frame_num=frame_num
    )

    # --- 4. إنشاء الواجهة المرئية ---
    display_iface = DisplayInterface(DisplayConfig(width=1280, height=720))
    bev_maps = render_bev(active_tracks, waypoints_np, ego_pos, ego_theta)
    display_data = {
        'camera_view': image, 'map_t0': bev_maps['t0'], 'map_t1': bev_maps['t1'], 'map_t2': bev_maps['t2'],
        'frame_num': frame_num, 'speed': request.measurements.speed * 3.6,
        'target_speed': ctrl_info.get('target_speed', 0) * 3.6,
        'steer': steer, 'throttle': throttle, 'brake': brake,
        'light_prob': light_prob, 'stop_prob': stop_prob,
        'object_counts': {'car': len(active_tracks)}
    }
    dashboard = display_iface.run_interface(display_data)

    # --- 5. تحديث الجلسة وإرجاع الرد ---
    session['frame_num'] += 1
    
    return RunStepResponse(
        control_commands=ControlCommands(steer=steer, throttle=throttle, brake=brake),
        scene_analysis=SceneAnalysis(is_junction=junction_prob, traffic_light_state=light_prob, stop_sign=stop_prob),
        predicted_waypoints=[tuple(wp) for wp in waypoints_np.tolist()],
        dashboard_b64=cv2_to_b64(dashboard),
        reason=ctrl_info.get('brake_reason', "Cruising")
    )

@app.post("/end_session", summary="End and clean up a session", tags=["Session Management"])
def end_session(session_id: str):
    if session_id in SESSIONS:
        del SESSIONS[session_id]
        logging.info(f"Session ended: {session_id}")
        return {"message": f"Session {session_id} ended."}
    raise HTTPException(status_code=404, detail="Session not found.")
# ================== تشغيل الخادم ==================
# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=7860)