Spaces:
Running
Running
File size: 12,880 Bytes
7b0dd2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# simulation_modules.py
import torch
import numpy as np
import cv2
import math
from collections import deque
from typing import List, Tuple, Dict, Any, Optional
# ================== Constants ==================
WAYPOINT_SCALE_FACTOR = 5.0
T1_FUTURE_TIME = 1.0
T2_FUTURE_TIME = 2.0
PIXELS_PER_METER = 8
MAX_DISTANCE = 32
IMG_SIZE = MAX_DISTANCE * PIXELS_PER_METER * 2
EGO_CAR_X = IMG_SIZE // 2
EGO_CAR_Y = IMG_SIZE - (4.0 * PIXELS_PER_METER)
COLORS = {
'vehicle': [255, 0, 0],
'pedestrian': [0, 255, 0],
'cyclist': [0, 0, 255],
'waypoint': [255, 255, 0],
'ego_car': [255, 255, 255]
}
# ================== PID Controller ==================
class PIDController:
def __init__(self, K_P=1.0, K_I=0.0, K_D=0.0, n=20):
self._K_P = K_P
self._K_I = K_I
self._K_D = K_D
self._window = deque([0 for _ in range(n)], maxlen=n)
def step(self, error):
self._window.append(error)
if len(self._window) >= 2:
integral = np.mean(self._window)
derivative = self._window[-1] - self._window[-2]
else:
integral = derivative = 0.0
return self._K_P * error + self._K_I * integral + self._K_D * derivative
# ================== Helper Functions ==================
def ensure_rgb(image):
if len(image.shape) == 2:
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.shape[2] == 1:
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
return image
def add_rect(img, loc, ori, box, value, color):
center_x = int(loc[0] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
center_y = int(loc[1] * PIXELS_PER_METER + MAX_DISTANCE * PIXELS_PER_METER)
size_px = (int(box[0] * PIXELS_PER_METER), int(box[1] * PIXELS_PER_METER))
angle_deg = -np.degrees(math.atan2(ori[1], ori[0]))
box_points = cv2.boxPoints(((center_x, center_y), size_px, angle_deg))
box_points = np.int32(box_points)
adjusted_color = [int(c * value) for c in color]
cv2.fillConvexPoly(img, box_points, adjusted_color)
return img
def render(traffic_grid, t=0):
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
counts = {'vehicles': 0, 'pedestrians': 0, 'cyclists': 0}
if isinstance(traffic_grid, torch.Tensor):
traffic_grid = traffic_grid.cpu().numpy()
h, w, c = traffic_grid.shape
for y in range(h):
for x in range(w):
for ch in range(c):
if traffic_grid[y, x, ch] > 0.1:
world_x = (x / w - 0.5) * MAX_DISTANCE * 2
world_y = (y / h - 0.5) * MAX_DISTANCE * 2
if ch < 3:
color = COLORS['vehicle']
counts['vehicles'] += 1
box_size = [2.0, 4.0]
elif ch < 5:
color = COLORS['pedestrian']
counts['pedestrians'] += 1
box_size = [0.8, 0.8]
else:
color = COLORS['cyclist']
counts['cyclists'] += 1
box_size = [1.2, 2.0]
img = add_rect(img, [world_x, world_y], [1.0, 0.0],
box_size, traffic_grid[y, x, ch], color)
return img, counts
def render_waypoints(waypoints, scale_factor=WAYPOINT_SCALE_FACTOR):
img = np.zeros((IMG_SIZE, IMG_SIZE, 3), dtype=np.uint8)
if isinstance(waypoints, torch.Tensor):
waypoints = waypoints.cpu().numpy()
scaled_waypoints = waypoints * scale_factor
for i, wp in enumerate(scaled_waypoints):
px = int(wp[0] * PIXELS_PER_METER + IMG_SIZE // 2)
py = int(wp[1] * PIXELS_PER_METER + IMG_SIZE // 2)
if 0 <= px < IMG_SIZE and 0 <= py < IMG_SIZE:
radius = max(3, 8 - i)
cv2.circle(img, (px, py), radius, COLORS['waypoint'], -1)
if i > 0:
prev_px = int(scaled_waypoints[i-1][0] * PIXELS_PER_METER + IMG_SIZE // 2)
prev_py = int(scaled_waypoints[i-1][1] * PIXELS_PER_METER + IMG_SIZE // 2)
if 0 <= prev_px < IMG_SIZE and 0 <= prev_py < IMG_SIZE:
cv2.line(img, (prev_px, prev_py), (px, py), COLORS['waypoint'], 2)
return img
def render_self_car(img):
car_pos = [0, -4.0]
car_ori = [1.0, 0.0]
car_size = [2.0, 4.5]
return add_rect(img, car_pos, car_ori, car_size, 1.0, COLORS['ego_car'])
# ================== Tracker Classes ==================
class TrackedObject:
def __init__(self, obj_id: int):
self.id = obj_id
self.last_step = 0
self.last_pos = [0.0, 0.0]
self.historical_pos = []
self.historical_steps = []
self.velocity = [0.0, 0.0]
self.confidence = 1.0
def update(self, step: int, obj_info: List[float]):
self.last_step = step
self.last_pos = obj_info[:2]
self.historical_pos.append(obj_info[:2])
self.historical_steps.append(step)
if len(self.historical_pos) >= 2:
dt = self.historical_steps[-1] - self.historical_steps[-2]
if dt > 0:
dx = self.historical_pos[-1][0] - self.historical_pos[-2][0]
dy = self.historical_pos[-1][1] - self.historical_pos[-2][1]
self.velocity = [dx/dt, dy/dt]
def predict_position(self, future_time: float) -> List[float]:
predicted_x = self.last_pos[0] + self.velocity[0] * future_time
predicted_y = self.last_pos[1] + self.velocity[1] * future_time
return [predicted_x, predicted_y]
def is_alive(self, current_step: int, max_age: int = 5) -> bool:
return (current_step - self.last_step) <= max_age
class Tracker:
def __init__(self, frequency: int = 10):
self.tracks: List[TrackedObject] = []
self.frequency = frequency
self.next_id = 0
self.current_step = 0
def update_and_predict(self, detections: List[Dict], step: int) -> np.ndarray:
self.current_step = step
for detection in detections:
pos = detection.get('position', [0, 0])
feature = detection.get('feature', 0.5)
best_match = None
min_distance = float('inf')
for track in self.tracks:
if track.is_alive(step):
distance = np.linalg.norm(np.array(pos) - np.array(track.last_pos))
if distance < min_distance and distance < 2.0:
min_distance = distance
best_match = track
if best_match:
best_match.update(step, pos + [feature])
else:
new_track = TrackedObject(self.next_id)
new_track.update(step, pos + [feature])
self.tracks.append(new_track)
self.next_id += 1
self.tracks = [t for t in self.tracks if t.is_alive(step)]
return self._generate_prediction_grid()
def _generate_prediction_grid(self) -> np.ndarray:
grid = np.zeros((20, 20, 7), dtype=np.float32)
for track in self.tracks:
if track.is_alive(self.current_step):
current_pos = track.last_pos
future_pos_t1 = track.predict_position(T1_FUTURE_TIME)
future_pos_t2 = track.predict_position(T2_FUTURE_TIME)
for pos in [current_pos, future_pos_t1, future_pos_t2]:
grid_x = int((pos[0] / (MAX_DISTANCE * 2) + 0.5) * 20)
grid_y = int((pos[1] / (MAX_DISTANCE * 2) + 0.5) * 20)
if 0 <= grid_x < 20 and 0 <= grid_y < 20:
channel = 0
grid[grid_y, grid_x, channel] = max(grid[grid_y, grid_x, channel], track.confidence)
return grid
# ================== Controller Classes ==================
class ControllerConfig:
def __init__(self):
self.turn_KP = 1.0
self.turn_KI = 0.1
self.turn_KD = 0.1
self.turn_n = 20
self.speed_KP = 0.5
self.speed_KI = 0.05
self.speed_KD = 0.1
self.speed_n = 20
self.max_speed = 6.0
self.max_throttle = 0.75
self.clip_delta = 0.25
self.brake_speed = 0.4
self.brake_ratio = 1.1
class InterfuserController:
def __init__(self, config: ControllerConfig):
self.config = config
self.turn_controller = PIDController(config.turn_KP, config.turn_KI, config.turn_KD, config.turn_n)
self.speed_controller = PIDController(config.speed_KP, config.speed_KI, config.speed_KD, config.speed_n)
self.last_steer = 0.0
self.last_throttle = 0.0
self.target_speed = 3.0
def run_step(self, current_speed: float, waypoints: np.ndarray,
junction: float, traffic_light_state: float,
stop_sign: float, meta_data: Dict) -> Tuple[float, float, bool, str]:
if isinstance(waypoints, torch.Tensor):
waypoints = waypoints.cpu().numpy()
if len(waypoints) > 1:
dx = waypoints[1][0] - waypoints[0][0]
dy = waypoints[1][1] - waypoints[0][1]
target_yaw = math.atan2(dy, dx)
steer = self.turn_controller.step(target_yaw)
else:
steer = 0.0
steer = np.clip(steer, -1.0, 1.0)
target_speed = self.target_speed
if junction > 0.5:
target_speed *= 0.7
if abs(steer) > 0.3:
target_speed *= 0.8
speed_error = target_speed - current_speed
throttle = self.speed_controller.step(speed_error)
throttle = np.clip(throttle, 0.0, self.config.max_throttle)
brake = False
if traffic_light_state > 0.5 or stop_sign > 0.5 or current_speed > self.config.max_speed:
brake = True
throttle = 0.0
self.last_steer = steer
self.last_throttle = throttle
metadata = f"Speed:{current_speed:.1f} Target:{target_speed:.1f} Junction:{junction:.2f}"
return steer, throttle, brake, metadata
# ================== Display Interface ==================
class DisplayInterface:
def __init__(self, width: int = 1200, height: int = 600):
self._width = width
self._height = height
self.camera_width = width // 2
self.camera_height = height
self.map_width = width // 2
self.map_height = height // 3
def run_interface(self, data: Dict[str, Any]) -> np.ndarray:
dashboard = np.zeros((self._height, self._width, 3), dtype=np.uint8)
# Camera view
camera_view = data.get('camera_view')
if camera_view is not None:
camera_resized = cv2.resize(camera_view, (self.camera_width, self.camera_height))
dashboard[:, :self.camera_width] = camera_resized
# Maps
map_start_x = self.camera_width
map_t0 = data.get('map_t0')
if map_t0 is not None:
map_resized = cv2.resize(map_t0, (self.map_width, self.map_height))
dashboard[:self.map_height, map_start_x:] = map_resized
cv2.putText(dashboard, "Current (t=0)", (map_start_x + 10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
map_t1 = data.get('map_t1')
if map_t1 is not None:
map_resized = cv2.resize(map_t1, (self.map_width, self.map_height))
y_start = self.map_height
dashboard[y_start:y_start + self.map_height, map_start_x:] = map_resized
cv2.putText(dashboard, f"Future (t={T1_FUTURE_TIME}s)",
(map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (255, 255, 255), 2)
map_t2 = data.get('map_t2')
if map_t2 is not None:
map_resized = cv2.resize(map_t2, (self.map_width, self.map_height))
y_start = self.map_height * 2
dashboard[y_start:, map_start_x:] = map_resized
cv2.putText(dashboard, f"Future (t={T2_FUTURE_TIME}s)",
(map_start_x + 10, y_start + 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (255, 255, 255), 2)
# Text info
text_info = data.get('text_info', {})
y_offset = 50
for key, value in text_info.items():
cv2.putText(dashboard, value, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 255, 0), 2)
y_offset += 30
return dashboard
|