Spaces:
Runtime error
Runtime error
import subprocess | |
import sys | |
import os | |
# Install TensorFlow | |
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'tensorflow']) | |
# Now import the required modules | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
import gradio as gr | |
# Define the path to the model file in the /mnt/data/ directory | |
model_path = 'Bajiyo/Named_entity_transliteration_malayalam/best_model.h5' | |
# Load your custom Keras model | |
model = load_model(model_path) | |
tokenizer = source_tokenizer | |
# Function for transliteration | |
def transliterate_malayalam_to_english(malayalam_text): | |
# Tokenize and preprocess the input (adjust this based on your preprocessing logic) | |
input_sequence = pad_sequences(tokenizer.texts_to_sequences([malayalam_text]), maxlen=max_seq_length, padding='post') | |
# Use the model for prediction | |
output_sequence = model.predict(input_sequence) | |
# Use argmax to get the most likely characters | |
predicted_text = "".join([tokenizer.index_word[idx] for idx in np.argmax(output_sequence, axis=-1)[0] if idx != 0]) | |
return predicted_text | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=transliterate_malayalam_to_english, | |
inputs=gr.Textbox(prompt="Enter Malayalam Text", lines=5), | |
outputs=gr.Textbox(prompt="Transliterated English Text", lines=5), | |
live=True | |
) | |
# Launch the Gradio interface | |
iface.launch() | |