Spaces:
Runtime error
Runtime error
File size: 1,484 Bytes
080b5e3 613cb95 080b5e3 ade2af2 080b5e3 97bb6da 613cb95 edfc751 613cb95 4beb772 613cb95 0688df4 97a5957 4beb772 97a5957 4beb772 8d9fe38 d18faba 97a5957 4beb772 97a5957 0688df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import subprocess
import sys
import os
# Install TensorFlow
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'tensorflow'])
# Now import the required modules
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
import gradio as gr
# Define the path to the model file in the /mnt/data/ directory
model_path = 'Bajiyo/Named_entity_transliteration_malayalam/best_model.h5'
# Load your custom Keras model
model = load_model(model_path)
tokenizer = source_tokenizer
# Function for transliteration
def transliterate_malayalam_to_english(malayalam_text):
# Tokenize and preprocess the input (adjust this based on your preprocessing logic)
input_sequence = pad_sequences(tokenizer.texts_to_sequences([malayalam_text]), maxlen=max_seq_length, padding='post')
# Use the model for prediction
output_sequence = model.predict(input_sequence)
# Use argmax to get the most likely characters
predicted_text = "".join([tokenizer.index_word[idx] for idx in np.argmax(output_sequence, axis=-1)[0] if idx != 0])
return predicted_text
# Create a Gradio interface
iface = gr.Interface(
fn=transliterate_malayalam_to_english,
inputs=gr.Textbox(prompt="Enter Malayalam Text", lines=5),
outputs=gr.Textbox(prompt="Transliterated English Text", lines=5),
live=True
)
# Launch the Gradio interface
iface.launch()
|