Spaces:
Sleeping
Sleeping
from typing import List, Optional, Dict | |
import numpy as np | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch.nn.functional as F | |
torch.set_grad_enabled(False) | |
def apply_top_p_with_epsilon(logits: torch.Tensor, top_p: float, epsilon: float = 1e-10) -> torch.Tensor: | |
""" | |
Applies a top-p (nucleus) filtering to logits but, instead of setting | |
the logits of non-selected tokens to -inf (which would result in zero probability), | |
sets them to log(epsilon), so that the support remains the same. | |
Parameters: | |
logits: Tensor of shape (batch, seq_len, vocab_size) | |
top_p: The nucleus threshold (e.g. 0.7, 0.8, etc.) | |
epsilon: The small value to assign to tokens not selected. | |
Returns: | |
new_logits: Tensor with the same shape as logits. | |
""" | |
# Compute probabilities from logits | |
probs = F.softmax(logits, dim=-1) | |
# Sort probabilities (descending) along the vocabulary dimension. | |
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1) | |
# Compute the cumulative sum along the sorted probabilities. | |
cumulative_probs = torch.cumsum(sorted_probs, dim=-1) | |
# Create a mask: True for tokens to keep. | |
# We keep tokens until cumulative_probs <= top_p. | |
keep_mask = cumulative_probs <= top_p | |
# Ensure that at least one token is kept per example: if none are kept, keep the top one. | |
# Here we check along the vocab dimension. | |
no_token_kept = keep_mask.sum(dim=-1, keepdim=True) == 0 | |
if no_token_kept.any(): | |
# For positions where no token was kept, set the first token (highest probability) to True. | |
# Note: torch.scatter_ returns a modified tensor. | |
# We create a tensor of zeros (False) and then scatter True into the first column. | |
fix_mask = torch.zeros_like(keep_mask, dtype=torch.bool) | |
fix_mask.scatter_(-1, torch.zeros_like(keep_mask[..., :1], dtype=torch.long), True) | |
keep_mask = torch.where(no_token_kept, fix_mask, keep_mask) | |
# Now, create new logits: copy the original logits. | |
new_logits = logits.clone() | |
# For tokens that are not kept (i.e. where keep_mask is False), set their logit to log(epsilon) | |
new_logits[~keep_mask] = torch.log(torch.tensor(epsilon, device=logits.device, dtype=logits.dtype)) | |
return new_logits | |
class Mosaic(object): | |
def __init__( | |
self, | |
model_name_or_paths: List[str], | |
use_bfloat16: bool = True, | |
max_token_observed: int = 512, | |
unigram: Optional[str] = None, | |
custom_config: Optional[List[bool]] = None, | |
stupid_mode: bool = False, | |
one_model_mode: bool = False | |
) -> None: | |
""" | |
If `loaded_models` is provided, re-use any entries matching | |
model_name_or_paths; otherwise load and optionally register | |
into that dict. | |
""" | |
self.models = [] | |
for model_name_or_path in model_name_or_paths: | |
# load from pre-trained hub or path | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, | |
device_map="auto", | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32, | |
) | |
model.eval() | |
self.models.append(model) | |
print(f"Loaded model: {model_name_or_path}") | |
self.one_model_mode = one_model_mode | |
if stupid_mode: | |
self.max_iters = 0 | |
else: | |
self.max_iters = 1000 | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_paths[-1]) | |
if not self.tokenizer.pad_token: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.max_token_observed = max_token_observed | |
self.nb_models = len(self.models) | |
self.unigram_path = unigram | |
if custom_config is None: | |
custom_config = [False] * self.nb_models | |
self.custom_config = custom_config | |
def _tokenize(self, batch: list[str]) -> transformers.BatchEncoding: | |
encodings = self.tokenizer( | |
batch, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_token_observed, | |
return_token_type_ids=False) | |
return encodings | |
def trim_logits(self, logits, max_length=32000): | |
# Check the shape of the logits tensor | |
if logits.shape[2] > max_length: | |
# Slice the tensor to keep only the first max_length elements along the last dimension | |
logits = logits[:, :, :max_length] | |
return logits | |
def _get_logits(self, encodings: transformers.BatchEncoding) -> List[torch.Tensor]: | |
# If one_model_mode is active, we simulate multiple models by applying top-p with different thresholds. | |
if self.one_model_mode: | |
# Compute base logits from the single model. | |
model = self.models[0] | |
device = next(model.parameters()).device | |
model_encodings = encodings.to(device) | |
base_logits = model(**model_encodings).logits | |
# Optionally trim logits: | |
# base_logits = self.trim_logits(base_logits) | |
# Define the top-p thresholds (e.g., four different values) | |
top_p_values = [0.7, 0.8, 0.9, 0.95] | |
# Epsilon value for non-selected tokens (you can adjust this if needed) | |
epsilon = 1e-10 | |
logits_list = [] | |
for top_p in top_p_values: | |
warped_logits = apply_top_p_with_epsilon(base_logits, top_p, epsilon) | |
logits_list.append(warped_logits) | |
else: | |
# Normal mode: use each model in self.models. | |
logits_list = [] | |
for i, model in enumerate(self.models): | |
device = next(model.parameters()).device | |
model_encodings = encodings.to(device) | |
logits = model(**model_encodings).logits | |
# Optionally trim logits: | |
# logits = self.trim_logits(logits) | |
logits_list.append(logits) | |
if device.type == "cuda": | |
torch.cuda.synchronize(device) | |
if self.unigram_path: | |
batch_size, seq_len, voc_size = logits_list[0].shape | |
unigram_proba = torch.load(self.unigram_path) | |
unigram_proba += 1e-10 | |
unigram_logits = torch.log(unigram_proba) | |
# Optionally center logits if needed: | |
logits = logits_list[0] - logits_list[0].mean(dim=-1, keepdim=True) | |
expanded_unigram_logits = unigram_logits.unsqueeze(0).unsqueeze(0).expand(batch_size, seq_len, voc_size) | |
logits_list.append(expanded_unigram_logits) | |
return logits_list | |
def get_softmax_probabilities(self, input_text): | |
encodings = self._tokenize(input_text) | |
logits_list = self._get_logits(encodings) | |
probabilities_list = softmax_probabilities_all_models(logits_list) | |
return encodings, logits_list, probabilities_list | |
def compute_arimoto_torch(self, input_text, max_iters=1000): | |
encodings, logits_list, tensors_list = self.get_softmax_probabilities(input_text) | |
nb_models = len(tensors_list) | |
seq_len = len(encodings.input_ids[0]) | |
voc_size = tensors_list[0].shape[-1] | |
device = tensors_list[0].device | |
# Move all tensors in tensors_list to the device of the first tensor | |
tensors_list = [tensor.to(device) for tensor in tensors_list] | |
# Stack all model predictions along a new dimension to form a (seq_len, nb_models, voc_size) tensor | |
probabilities_tensor = torch.stack([t[0] for t in tensors_list], dim=1).to(tensors_list[0].device) | |
# Run the Blahut-Arimoto algorithm on the entire batch | |
capacity, p = blahut_arimoto_torch(probabilities_tensor, max_iters=max_iters) | |
# Prepare the weighted sum tensor, initially zeros | |
weighted_sum_tensor = torch.zeros_like(tensors_list[0]) | |
# Here, we need an additional mechanism if 'p' shapes or logic require different handling | |
# Assuming 'p' is now (seq_len, nb_models), apply weights to each model's output | |
for i in range(nb_models): | |
weighted_sum_tensor += p[:, i:i+1] * tensors_list[i] | |
return encodings, weighted_sum_tensor, tensors_list, p, logits_list | |
def compute_scores(self, input_text): | |
encodings, weighted_sum_tensor, probabilities_list, arimoto_weights, logits_list = self.compute_arimoto_torch(input_text, max_iters=self.max_iters) | |
log_ppl, ppl, nll = perplexity(encodings, weighted_sum_tensor) | |
ppl_list = perplexity_all_models(encodings, logits_list) | |
x_ppl_list = cross_entropy(weighted_sum_tensor, probabilities_list) | |
return log_ppl, x_ppl_list, arimoto_weights, nll, ppl_list | |
def compute_end_score(self, input_text): | |
encodings, weighted_sum_tensor, probabilities_list, arimoto_weights, logits_list = self.compute_arimoto_torch(input_text) | |
log_ppl, ppl, nll = perplexity(encodings, weighted_sum_tensor) | |
ppl_list = perplexity_all_models(encodings, logits_list) | |
x_ppl_list = cross_entropy(weighted_sum_tensor, probabilities_list) | |
log_ppl_value = log_ppl.item() | |
x_ppl_values = [x.item() for x in x_ppl_list] | |
final_score = log_ppl_value - x_ppl_values[0] #Ensure your "reference model" is given as first argument | |
return final_score | |
def perplexity(encodings, weighted_sum_tensor): | |
shifted_probabilities = weighted_sum_tensor[..., :-1, :].contiguous() | |
shifted_labels = encodings.input_ids[..., 1:].contiguous() | |
shifted_attention_mask = encodings.attention_mask[..., 1:].contiguous() | |
device = shifted_probabilities.device | |
# Ensure all tensors are moved to the same device | |
shifted_probabilities = shifted_probabilities.to(device) | |
shifted_labels = shifted_labels.to(device) | |
shifted_attention_mask = shifted_attention_mask.to(device) | |
actual_next_token_probabilities = torch.gather(shifted_probabilities, 2, shifted_labels.unsqueeze(-1)).squeeze(-1) | |
nll = -torch.log(actual_next_token_probabilities + 1e-12) | |
nll_masked = nll * shifted_attention_mask | |
# Calculate the average NLL per sequence, taking into account only the valid (non-padded) tokens | |
average_nll = torch.sum(nll_masked, dim=1) / torch.sum(shifted_attention_mask, dim=1) | |
# Calculate perplexity per sequence | |
perplexity = torch.exp(average_nll) | |
return average_nll, perplexity, nll_masked | |
def cross_entropy(weighted_sum_tensor, probabilities_list): | |
device = weighted_sum_tensor.device | |
x_ppl_list = [] | |
# Compute log of weighted_sum_tensor outside the loop since it doesn't depend on m2_probabilities | |
log_M1 = torch.log(weighted_sum_tensor).to(device) | |
for m2_probabilities in probabilities_list: | |
m2_probabilities = m2_probabilities.to(device) | |
# Ensure m2_probabilities is correctly shaped for batch matrix multiplication | |
# log_M1 shape is already (batch_size, sequence_length, vocabulary_size) | |
# We need m2_probabilities in shape (batch_size, vocabulary_size, sequence_length) for bmm | |
m2_probabilities_transposed = m2_probabilities.transpose(1, 2) | |
# Perform batch matrix multiplication | |
# Resulting shape: (batch_size, sequence_length, sequence_length) | |
# We sum over the vocabulary dimension, effectively computing the dot product for each sequence position | |
dot_products = torch.bmm(log_M1, m2_probabilities_transposed) | |
# Since we're interested in the diagonal (dot products of corresponding vectors), we extract it | |
# The diagonal for each item in the batch gives us the dot products we're interested in | |
# torch.diagonal doesn't support batched operations directly, so we need to workaround | |
dot_products_diagonal = torch.einsum('bii->bi', dot_products) # Using einsum to extract diagonals for batch | |
# Compute the mean of the dot_products_diagonal across the sequence dimension | |
# This gives us the average dot product per sequence, which is then negated | |
x_ppl = -torch.mean(dot_products_diagonal, dim=1) | |
x_ppl_list.append(x_ppl) | |
x_ppl_tensor = torch.stack(x_ppl_list) | |
return x_ppl_list #, x_ppl_tensor | |
def softmax_probabilities_all_models(logits_list: List[torch.Tensor]) -> List[torch.Tensor]: | |
""" | |
Calculates the softmax probabilities for the entire sequence of tokens for each model. | |
Parameters: | |
- logits_list: List[torch.Tensor] | |
A list containing the logits tensor for each model. | |
Returns: | |
- List[torch.Tensor]: A list of tensors, where each tensor is the softmax probabilities | |
for one model across the entire sequence of tokens. | |
""" | |
softmax_fn = torch.nn.Softmax(dim=-1) | |
probabilities_list = [] | |
for logits in logits_list: | |
# Calculate softmax probabilities across the vocabulary for each token position | |
softmax_probabilities = softmax_fn(logits) | |
probabilities_list.append(softmax_probabilities) | |
return probabilities_list | |
def perplexity_logits(encoding, logits): | |
# Ensure encoding tensors are moved to the same device as logits | |
device = logits.device | |
logits = torch.clamp(logits, min=-20, max=50) | |
encoding_input_ids = encoding.input_ids.to(device) | |
encoding_attention_mask = encoding.attention_mask.to(device) | |
ce_loss_fn = torch.nn.CrossEntropyLoss(reduction="none") | |
shifted_logits = logits[..., :-1, :].contiguous() | |
shifted_labels = encoding_input_ids[..., 1:].contiguous() | |
shifted_attention_mask = encoding_attention_mask[..., 1:].contiguous() | |
# Calculate Cross-Entropy loss | |
cross_entropy_loss = ce_loss_fn(shifted_logits.transpose(1, 2), shifted_labels) | |
# Apply attention mask | |
masked_ce_loss = cross_entropy_loss * shifted_attention_mask | |
# Calculate perplexity | |
ppl = masked_ce_loss.sum(1) / shifted_attention_mask.sum(1) | |
# Move result to CPU and convert to numpy for further processing if needed | |
ppl = ppl.to("cpu").float().numpy() | |
return ppl | |
def perplexity_all_models(encoding, logits_list): | |
ppl_list = [] | |
for logits in logits_list: | |
ppl = perplexity_logits(encoding, logits) | |
ppl_list.append(ppl) | |
return ppl_list | |
def blahut_arimoto_torch(W, epsilon=1e-6, max_iters=1000): | |
""" | |
Batch-process Blahut-Arimoto using PyTorch for multiple sequences. | |
""" | |
seq_len, nb_models, voc_size = W.shape | |
p = torch.full((seq_len, nb_models), 1.0 / nb_models, device=W.device, dtype=W.dtype) | |
prod_exp = torch.ones((seq_len, nb_models), device=W.device, dtype=W.dtype) | |
for _ in range(max_iters): | |
# Calculate the marginal probabilities | |
sum_p_w = torch.bmm(p.unsqueeze(1), W).squeeze(1) # Resultant shape: (seq_len, voc_size) | |
# Calculate normalized probabilities | |
W_normalized = W / sum_p_w.unsqueeze(1) # Broadcasting to shape (seq_len, nb_models, voc_size) | |
# Avoid numerical issues with logarithms | |
W_normalized[W_normalized == 0] = torch.finfo(W.dtype).eps | |
log_term = torch.log(W_normalized) | |
log_term[torch.isnan(log_term) | torch.isinf(log_term)] = 0 | |
# Compute product exponentials and update probabilities | |
prod_exp = torch.exp(torch.sum(W * log_term, axis=2)) # Sum across voc_size | |
p_new = (p * prod_exp) / torch.sum(p * prod_exp, dim=1, keepdim=True) | |
# Check convergence | |
if torch.max(torch.abs(p - p_new)) < epsilon: | |
break | |
p = p_new | |
# Compute channel capacity | |
capacity = torch.log(torch.sum(p * prod_exp, dim=1)) / torch.log(torch.tensor(2.0, device=W.device)) | |
return capacity, p |