MOSAIC / app.py
BaggerOfWords's picture
Actual removal
477b2f3
import gradio as gr
from mosaic import Mosaic
import spaces
import traceback
# Maximum number of model textboxes
MAX_MODELS = 10
GPT_CONFIG_MODELS = [
"openai-community/gpt2-large",
"openai-community/gpt2-medium",
"openai-community/gpt2"
]
Falcon_CONFIG_MODELS = [
"tiiuae/Falcon3-10B-Base",
"tiiuae/Falcon3-7B-Instruct",
"tiiuae/Falcon3-7B-Base"
]
# Increase model slots
def update_textboxes(n_visible):
if n_visible < MAX_MODELS:
n_visible += 1
tb_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
return (n_visible, *tb_updates)
# Decrease model slots and clear removed entries
def remove_textboxes(n_visible):
old = n_visible
if n_visible > 2:
n_visible -= 1
tb_updates = []
for i in range(MAX_MODELS):
if i < n_visible:
tb_updates.append(gr.update(visible=True))
else:
tb_updates.append(gr.update(visible=False, value=""))
return (n_visible, *tb_updates)
def apply_config1():
"""
Returns:
- new n_visible (number of boxes to show)
- new values & visibility for each model textbox
- new visibility for each Load button & status box
"""
n_vis = len(GPT_CONFIG_MODELS)
tb_updates = []
for i in range(MAX_MODELS):
if i < n_vis:
# show this slot, set its value from CONFIG_MODELS
tb_updates.append(gr.update(visible=True, value=GPT_CONFIG_MODELS[i]))
else:
# hide all others
tb_updates.append(gr.update(visible=False, value=""))
# Return in the same shape as your update_textboxes/remove_textboxes:
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
return (n_vis, *tb_updates)
def apply_config2():
"""
Returns:
- new n_visible (number of boxes to show)
- new values & visibility for each model textbox
- new visibility for each Load button & status box
"""
n_vis = len(Falcon_CONFIG_MODELS)
tb_updates = []
for i in range(MAX_MODELS):
if i < n_vis:
# show this slot, set its value from CONFIG_MODELS
tb_updates.append(gr.update(visible=True, value=Falcon_CONFIG_MODELS[i]))
else:
# hide all others
tb_updates.append(gr.update(visible=False, value=""))
# Return in the same shape as your update_textboxes/remove_textboxes:
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
return (n_vis, *tb_updates)
@spaces.GPU()
def run_scoring(input_text, *args):
"""
args: first MAX_MODELS entries are model paths, followed by threshold_choice and custom_threshold
"""
try:
# unpack
models = [m.strip() for m in args[:MAX_MODELS] if m.strip()]
threshold_choice = args[MAX_MODELS]
custom_threshold = args[MAX_MODELS+1]
if len(models) < 2:
return "Please enter at least two model paths.", None, None
threshold = 0.0 if threshold_choice == "default" else custom_threshold
mosaic_instance = Mosaic(model_name_or_paths=models, one_model_mode=False)
final_score = mosaic_instance.compute_end_score(input_text)
msg = "This text was probably generated." if final_score < threshold else "This text is likely human-written."
return msg, final_score, threshold
except Exception as e:
tb = traceback.format_exc()
return f"Error: {e}\n{tb}", None, None
# Build Blocks UI
demo = gr.Blocks()
with demo:
gr.Markdown("# MOSAIC Scoring App")
with gr.Row():
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
with gr.Column():
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
gr.Markdown("### Model Paths (at least 2 required)")
n_models_state = gr.State(4)
model_inputs = []
for i in range(1, MAX_MODELS+1):
with gr.Row():
tb = gr.Textbox(label=f"Model {i} Path", value="" if i > 4 else None, visible=(i <= 4))
model_inputs.append(tb)
with gr.Row():
plus = gr.Button("Add model slot", elem_id="plus_button")
minus = gr.Button("Remove model slot", elem_id="minus_button")
config1_btn = gr.Button("Try Basic gpt Configuration")
plus.click(
fn=update_textboxes,
inputs=n_models_state,
outputs=[n_models_state, *model_inputs]
)
minus.click(
fn=remove_textboxes,
inputs=n_models_state,
outputs=[n_models_state, *model_inputs]
)
config1_btn.click(
fn=apply_config1,
inputs=None,
outputs=[
n_models_state,
*model_inputs
]
)
with gr.Row():
threshold_choice = gr.Radio(choices=["default", "custom"], value="default", label="Threshold Choice")
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)")
with gr.Row():
output_message = gr.Textbox(label="Result Message")
output_score = gr.Number(label="Final Score")
output_threshold = gr.Number(label="Threshold Used")
gr.Markdown("**⚠️ All models need to be loaded for scoring, this can take time**")
run_button = gr.Button("Run Scoring")
run_button.click(
fn=run_scoring,
inputs=[input_text, *model_inputs, threshold_choice, custom_threshold],
outputs=[output_message, output_score, output_threshold]
)
# Launch
demo.queue()
demo.launch()