Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,145 Bytes
743ec89 518f93e 41a8e71 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 2940841 41a8e71 2940841 41a8e71 2940841 41a8e71 2940841 41a8e71 2940841 41a8e71 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 fdf4266 41a8e71 743ec89 2940841 743ec89 2940841 41a8e71 2940841 41a8e71 743ec89 41a8e71 743ec89 41a8e71 2940841 41a8e71 2940841 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 743ec89 41a8e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
from mosaic import Mosaic # adjust import as needed
import spaces
import traceback
from transformers import AutoModelForCausalLM
import torch
# Maximum number of model textboxes
MAX_MODELS = 10
# Cache for loaded models to reuse
LOADED_MODELS = {}
GPT_CONFIG_MODELS = [
"openai-community/gpt2-large",
"openai-community/gpt2-medium",
"openai-community/gpt2"
]
Falcon_CONFIG_MODELS = [
"tiiuae/Falcon3-10B-Base",
"tiiuae/Falcon3-10B-Instruct",
"tiiuae/Falcon3-7B-Base",
"tiiuae/Falcon3-7B-Instruct"
]
# Increase model slots
def update_textboxes(n_visible):
if n_visible < MAX_MODELS:
n_visible += 1
tb_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
btn_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
status_updates = [gr.update(visible=(i < n_visible)) for i in range(MAX_MODELS)]
return (n_visible, *tb_updates, *btn_updates, *status_updates)
# Decrease model slots and clear removed entries
def remove_textboxes(n_visible):
old = n_visible
if n_visible > 2:
n_visible -= 1
new = n_visible
# Remove cached models for slots now hidden
for idx in range(new, old):
LOADED_MODELS.pop(idx+1, None)
tb_updates, btn_updates, status_updates = [], [], []
for i in range(MAX_MODELS):
if i < n_visible:
tb_updates.append(gr.update(visible=True))
btn_updates.append(gr.update(visible=True))
status_updates.append(gr.update(visible=True))
else:
tb_updates.append(gr.update(visible=False, value=""))
btn_updates.append(gr.update(visible=False))
status_updates.append(gr.update(visible=False, value="Not loaded"))
return (n_visible, *tb_updates, *btn_updates, *status_updates)
def apply_config1():
"""
Returns:
- new n_visible (number of boxes to show)
- new values & visibility for each model textbox
- new visibility for each Load button & status box
"""
n_vis = len(GPT_CONFIG_MODELS)
tb_updates, btn_updates, status_updates = [], [], []
for i in range(MAX_MODELS):
if i < n_vis:
# show this slot, set its value from CONFIG_MODELS
tb_updates.append(gr.update(visible=True, value=GPT_CONFIG_MODELS[i]))
btn_updates.append(gr.update(visible=True))
status_updates.append(gr.update(visible=True, value="Not loaded"))
else:
# hide all others
tb_updates.append(gr.update(visible=False, value=""))
btn_updates.append(gr.update(visible=False))
status_updates.append(gr.update(visible=False, value="Not loaded"))
# Return in the same shape as your update_textboxes/remove_textboxes:
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
return (n_vis, *tb_updates, *btn_updates, *status_updates)
def apply_config2():
"""
Returns:
- new n_visible (number of boxes to show)
- new values & visibility for each model textbox
- new visibility for each Load button & status box
"""
n_vis = len(Falcon_CONFIG_MODELS)
tb_updates, btn_updates, status_updates = [], [], []
for i in range(MAX_MODELS):
if i < n_vis:
# show this slot, set its value from CONFIG_MODELS
tb_updates.append(gr.update(visible=True, value=Falcon_CONFIG_MODELS[i]))
btn_updates.append(gr.update(visible=True))
status_updates.append(gr.update(visible=True, value="Not loaded"))
else:
# hide all others
tb_updates.append(gr.update(visible=False, value=""))
btn_updates.append(gr.update(visible=False))
status_updates.append(gr.update(visible=False, value="Not loaded"))
# Return in the same shape as your update_textboxes/remove_textboxes:
# (n_models_state, *all textboxes, *all load buttons, *all status boxes)
return (n_vis, *tb_updates, *btn_updates, *status_updates)
@spaces.GPU()
# Load a single model and report status
def load_single_model(model_path, use_bfloat16=True):
try:
repo = model_path
if not repo:
return "Error: No path provided"
if repo in LOADED_MODELS:
return "Loaded"
# actual load; may raise
model = AutoModelForCausalLM.from_pretrained(
repo,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16 if use_bfloat16 else torch.float32,
)
model.eval()
LOADED_MODELS[repo] = model
return "Loaded"
except Exception as e:
return f"Error loading model: {e}"
# Determine interactive state for Run button
def check_all_loaded(n_visible, *status_texts):
# status_texts are strings: "Loaded" indicates success
needed = status_texts[:n_visible]
if all(s == "Loaded" for s in needed):
return gr.update(interactive=True)
return gr.update(interactive=False)
def run_scoring(input_text, *args):
"""
args: first MAX_MODELS entries are model paths, followed by threshold_choice and custom_threshold
"""
try:
# unpack
models = [m.strip() for m in args[:MAX_MODELS] if m.strip()]
threshold_choice = args[MAX_MODELS]
custom_threshold = args[MAX_MODELS+1]
if len(models) < 2:
return "Please enter at least two model paths.", None, None
threshold = 0.0 if threshold_choice == "default" else custom_threshold
mosaic_instance = Mosaic(model_name_or_paths=models, one_model_mode=False, loaded_models=LOADED_MODELS)
final_score = mosaic_instance.compute_end_score(input_text)
msg = "This text was probably generated." if final_score < threshold else "This text is likely human-written."
return msg, final_score, threshold
except Exception as e:
tb = traceback.format_exc()
return f"Error: {e}\n{tb}", None, None
# Build Blocks UI
demo = gr.Blocks()
with demo:
gr.Markdown("# MOSAIC Scoring App")
with gr.Row():
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
with gr.Column():
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
gr.Markdown("### Model Paths (at least 2 required)")
n_models_state = gr.State(4)
model_inputs, load_buttons, status_boxes = [], [], []
for i in range(1, MAX_MODELS+1):
with gr.Row():
tb = gr.Textbox(label=f"Model {i} Path", value="" if i > 4 else None, visible=(i <= 4))
btn = gr.Button("Load", elem_id=f"load_{i}", visible=(i <= 4))
status = gr.Textbox(label="Loading status", value="Not loaded", interactive=False, visible=(i <= 4))
btn.click(
fn=load_single_model,
inputs=[tb, gr.State(i)],
outputs=status
)
model_inputs.append(tb)
load_buttons.append(btn)
status_boxes.append(status)
with gr.Row():
plus = gr.Button("Add model slot", elem_id="plus_button")
minus = gr.Button("Remove model slot", elem_id="minus_button")
config1_btn = gr.Button("Try Basic gpt Configuration")
config2_btn = gr.Button("Try Falcon models Configuration")
plus.click(
fn=update_textboxes,
inputs=n_models_state,
outputs=[n_models_state, *model_inputs, *load_buttons, *status_boxes]
)
minus.click(
fn=remove_textboxes,
inputs=n_models_state,
outputs=[n_models_state, *model_inputs, *load_buttons, *status_boxes]
)
config1_btn.click(
fn=apply_config1,
inputs=None, # no inputs needed
outputs=[ # must match order:
n_models_state, # 1️⃣ the new visible‑count State
*model_inputs, # 2️⃣ your list of 10 Textboxes
*load_buttons, # 3️⃣ your list of 10 Load Buttons
*status_boxes # 4️⃣ your list of 10 Status Textboxes
]
)
config2_btn.click(
fn=apply_config2,
inputs=None, # no inputs needed
outputs=[ # must match order:
n_models_state, # 1️⃣ the new visible‑count State
*model_inputs, # 2️⃣ your list of 10 Textboxes
*load_buttons, # 3️⃣ your list of 10 Load Buttons
*status_boxes # 4️⃣ your list of 10 Status Textboxes
]
)
with gr.Row():
threshold_choice = gr.Radio(choices=["default", "custom"], value="default", label="Threshold Choice")
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)")
with gr.Row():
output_message = gr.Textbox(label="Result Message")
output_score = gr.Number(label="Final Score")
output_threshold = gr.Number(label="Threshold Used")
gr.Markdown("**⚠️ All models need to be loaded before scoring.**")
run_button = gr.Button("Run Scoring", interactive=False)
# Enable Run button when all statuses reflect "Loaded"
for status in status_boxes:
status.change(
fn=check_all_loaded,
inputs=[n_models_state, *status_boxes],
outputs=run_button
)
n_models_state.change(
fn=check_all_loaded,
inputs=[n_models_state, *status_boxes],
outputs=run_button
)
run_button.click(
fn=run_scoring,
inputs=[input_text, *model_inputs, threshold_choice, custom_threshold],
outputs=[output_message, output_score, output_threshold]
)
# Launch
demo.launch() |