Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,453 Bytes
0a376a0 da53b6a 6260d7d 7220f5b da53b6a 10107b2 0a376a0 7220f5b 0a376a0 da53b6a 3f0edbb da53b6a 10107b2 da53b6a 30c975d da53b6a 10107b2 da53b6a de4cfb0 da53b6a 6260d7d 7220f5b da53b6a 10107b2 da53b6a 10107b2 da53b6a 6260d7d da53b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
from faster_whisper import WhisperModel
import whisper_timestamped as whisper_ts
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
import time
import sys
from pathlib import Path
import glob
import ctypes
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V2, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ
def load_cudnn():
if not torch.cuda.is_available():
if DEBUG_MODE: print("[INFO] CUDA is not available, skipping cuDNN setup.")
return
if DEBUG_MODE: print(f"[INFO] sys.platform: {sys.platform}")
if sys.platform == "win32":
torch_lib_dir = Path(torch.__file__).parent / "lib"
if torch_lib_dir.exists():
os.add_dll_directory(str(torch_lib_dir))
if DEBUG_MODE: print(f"[INFO] Added DLL directory: {torch_lib_dir}")
else:
if DEBUG_MODE: print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")
elif sys.platform == "linux":
site_packages = Path(torch.__file__).resolve().parents[1]
cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"
if not cudnn_dir.exists():
if DEBUG_MODE: print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
return
pattern = str(cudnn_dir / "libcudnn_cnn*.so*")
matching_files = sorted(glob.glob(pattern))
if not matching_files:
if DEBUG_MODE: print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
return
for so_path in matching_files:
try:
ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)
if DEBUG_MODE: print(f"[INFO] Loaded: {so_path}")
except OSError as e:
if DEBUG_MODE: print(f"[WARNING] Failed to load {so_path}: {e}")
else:
if DEBUG_MODE: print(f"[WARNING] sys.platform is not win32 or linux")
def get_settings():
if DEBUG_MODE: print(f"Entering get_settings function...")
is_cuda_available = torch.cuda.is_available()
if is_cuda_available:
device = "cuda"
compute_type = "float16"
else:
device = "cpu"
compute_type = "int8"
if DEBUG_MODE: print(f"is_cuda_available: {is_cuda_available}")
if DEBUG_MODE: print(f"device: {device}")
if DEBUG_MODE: print(f"compute_type: {compute_type}")
if DEBUG_MODE: print(f"Exited get_settings function.")
return device, compute_type
def load_model(use_v2_fast, device, compute_type):
if DEBUG_MODE: print(f"Entering load_model function...")
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
if use_v2_fast:
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2_FAST} using {device} with {compute_type}...")
model = WhisperModel(
MODEL_PATH_V2_FAST,
device = device,
compute_type = compute_type,
)
else:
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2} using {device} with {compute_type}...")
# TODO add compute_type to load model
model = whisper_ts.load_model(
MODEL_PATH_V2,
device = device,
)
if DEBUG_MODE: print(f"Exiting load_model function...")
return model
def split_input_stereo_channels(audio_path):
if DEBUG_MODE: print(f"Entering split_input_stereo_channels function...")
ext = os.path.splitext(audio_path)[1].lower()
if ext == ".wav":
audio = AudioSegment.from_wav(audio_path)
elif ext == ".mp3":
audio = AudioSegment.from_file(audio_path, format="mp3")
else:
raise ValueError(f"Unsupported file format for: {audio_path}")
channels = audio.split_to_mono()
if len(channels) != 2:
raise ValueError(f"Audio {audio_path} has {len(channels)} channels (instead of 2).")
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
if DEBUG_MODE: print(f"Exited split_input_stereo_channels function.")
def format_audio(audio_path):
if DEBUG_MODE: print(f"Entering format_audio function...")
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2:
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
input_audio = resampler(input_audio)
input_audio = input_audio.squeeze()
if DEBUG_MODE: print(f"Exited format_audio function.")
return input_audio, RESAMPLING_FREQ
def process_waveforms():
if DEBUG_MODE: print(f"Entering process_waveforms function...")
left_waveform, _ = format_audio(LEFT_CHANNEL_TEMP_PATH)
right_waveform, _ = format_audio(RIGHT_CHANNEL_TEMP_PATH)
# TODO should this be equal to compute_type?
left_waveform = left_waveform.numpy().astype("float16")
right_waveform = right_waveform.numpy().astype("float16")
if DEBUG_MODE: print(f"Exited process_waveforms function.")
return left_waveform, right_waveform
def transcribe_audio_no_fast_model(model, audio_path):
if DEBUG_MODE: print(f"Entering transcribe_audio_no_fast_model function...")
result = whisper_ts.transcribe(
model,
audio_path,
beam_size=5,
best_of=5,
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
vad=False,
detect_disfluencies=True,
)
words = []
for segment in result.get('segments', []):
for word in segment.get('words', []):
word_text = word.get('word', '').strip()
if word_text.startswith(' '):
word_text = word_text[1:]
words.append({
'word': word_text,
'start': word.get('start', 0),
'end': word.get('end', 0),
'confidence': word.get('confidence', 0)
})
return {
'audio_path': audio_path,
'text': result['text'].strip(),
'segments': result.get('segments', []),
'words': words,
'duration': result.get('duration', 0),
'success': True
}
if DEBUG_MODE: print(f"Exited transcribe_audio_no_fast_model function.")
def transcribe_channels(left_waveform, right_waveform, model, use_v2_fast):
if DEBUG_MODE: print(f"Entering transcribe_channels function...")
if DEBUG_MODE: print(f"Preparing to transcribe...")
if use_v2_fast:
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
left_result = list(left_result)
right_result = list(right_result)
else:
left_result = transcribe_audio_no_fast_model(model, left_waveform)
right_result = transcribe_audio_no_fast_model(model, right_waveform)
if DEBUG_MODE: print(f"Exited transcribe_channels function.")
return left_result, right_result
# TODO refactor and rename this function
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
# TODO not used right now, decide to use it or not
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
merged_transcription = ''
current_speaker = None
current_segment = []
for i in range(1, len(segments) - 1, 2):
speaker_tag = segments[i]
text = segments[i + 1].strip()
speaker = re.search(r'\d{2}', speaker_tag).group()
if speaker == current_speaker:
current_segment.append(text)
else:
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
current_speaker = speaker
current_segment = [text]
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
return merged_transcription.strip()
def get_segments(result, speaker_label, use_v2_fast):
if DEBUG_MODE: print(f"Entering get_segments function...")
if use_v2_fast:
segments = result
final_segments = [
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
for seg in segments if seg.text
]
else:
segments = result.get("segments", [])
if not segments:
final_segments = []
final_segments = [
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label,
post_process_transcription(seg.get("text", "").strip()))
for seg in segments if seg.get("text")
]
if DEBUG_MODE: print(f"EXited get_segments function.")
return final_segments
def post_process_transcripts(left_result, right_result, use_v2_fast):
if DEBUG_MODE: print(f"Entering post_process_transcripts function...")
left_segs = get_segments(left_result, "Speaker 1", use_v2_fast)
right_segs = get_segments(right_result, "Speaker 2", use_v2_fast)
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
clean_output = ""
for start, end, speaker, text in merged_transcript:
clean_output += f"[{speaker}]: {text}\n"
clean_output = clean_output.strip()
if DEBUG_MODE: print(f"Exited post_process_transcripts function.")
return clean_output
def cleanup_temp_files(*file_paths):
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
if DEBUG_MODE: print(f"File paths to remove: {file_paths}")
for path in file_paths:
if path and os.path.exists(path):
if DEBUG_MODE: print(f"Removing path: {path}")
os.remove(path)
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
def generate(audio_path, use_v2_fast):
if DEBUG_MODE: print(f"Entering generate function...")
start = time.time()
load_cudnn()
device, compute_type = get_settings()
model = load_model(use_v2_fast, device, compute_type)
split_input_stereo_channels(audio_path)
left_waveform, right_waveform = process_waveforms()
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model, use_v2_fast)
output = post_process_transcripts(left_result, right_result, use_v2_fast)
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
end = time.time()
elapsed_secs = end - start
if DEBUG_MODE: print(f"elapsed_secs: {elapsed_secs}")
if DEBUG_MODE: print(f"Exited generate function.")
return output
|