Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse filesAdded dev scripts
- 1s_audio.wav +0 -0
- requirements_dev.txt +17 -0
- settings.py +7 -0
- whisper_cs_dev.py +318 -0
1s_audio.wav
ADDED
Binary file (33.4 kB). View file
|
|
requirements_dev.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
numpy<2
|
3 |
+
hf_transfer
|
4 |
+
torch
|
5 |
+
pyannote.audio
|
6 |
+
yt-dlp
|
7 |
+
gradio==5.15.0
|
8 |
+
torchaudio==2.2.1
|
9 |
+
librosa==0.10.1
|
10 |
+
ffmpeg-python==0.2.0
|
11 |
+
aina-gradio-theme==2.3
|
12 |
+
spaces
|
13 |
+
peft==0.11.1
|
14 |
+
whisper_timestamped
|
15 |
+
typing
|
16 |
+
faster_whisper
|
17 |
+
ctranslate2==4.4.0
|
settings.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEBUG_MODE = True
|
2 |
+
MODEL_PATH_V2 = "langtech-veu/whisper-timestamped-cs"
|
3 |
+
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
4 |
+
LEFT_CHANNEL_TEMP_PATH = "temp_mono_speaker2.wav"
|
5 |
+
RIGHT_CHANNEL_TEMP_PATH = "temp_mono_speaker1.wav"
|
6 |
+
RESAMPLING_FREQ = 16000
|
7 |
+
FAKE_AUDIO_PATH = "1s_audio.wav"
|
whisper_cs_dev.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydub import AudioSegment
|
2 |
+
import os
|
3 |
+
import torchaudio
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
import whisper_timestamped as whisper_ts
|
7 |
+
from faster_whisper import WhisperModel
|
8 |
+
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V2, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, FAKE_AUDIO_PATH, RESAMPLING_FREQ
|
9 |
+
|
10 |
+
|
11 |
+
def get_settings():
|
12 |
+
|
13 |
+
if DEBUG_MODE: print(f"Entering get_settings function...")
|
14 |
+
|
15 |
+
is_cuda_available = torch.cuda.is_available()
|
16 |
+
if is_cuda_available:
|
17 |
+
device = "cuda"
|
18 |
+
compute_type = "float16"
|
19 |
+
else:
|
20 |
+
device = "cpu"
|
21 |
+
compute_type = "int8"
|
22 |
+
if DEBUG_MODE: print(f"is_cuda_available: {is_cuda_available}")
|
23 |
+
if DEBUG_MODE: print(f"device: {device}")
|
24 |
+
if DEBUG_MODE: print(f"compute_type: {compute_type}")
|
25 |
+
|
26 |
+
if DEBUG_MODE: print(f"Exited get_settings function.")
|
27 |
+
|
28 |
+
return device, compute_type
|
29 |
+
|
30 |
+
|
31 |
+
def load_model(use_v2_fast, device, compute_type):
|
32 |
+
|
33 |
+
if DEBUG_MODE: print(f"Entering load_model function...")
|
34 |
+
|
35 |
+
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
|
36 |
+
|
37 |
+
if use_v2_fast:
|
38 |
+
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2_FAST} using {device} with {compute_type}...")
|
39 |
+
model = WhisperModel(
|
40 |
+
MODEL_PATH_V2_FAST,
|
41 |
+
device = device,
|
42 |
+
compute_type = compute_type,
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2} using {device} with {compute_type}...")
|
46 |
+
# TODO add compute_type to load model
|
47 |
+
model = whisper_ts.load_model(
|
48 |
+
MODEL_PATH_V2,
|
49 |
+
device = device,
|
50 |
+
)
|
51 |
+
|
52 |
+
# HACK we need to do this for strange reasons.
|
53 |
+
# If we don't do this, we get:
|
54 |
+
#Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
|
55 |
+
fake_model = whisper_ts.load_model(MODEL_PATH_V2, device=device)
|
56 |
+
|
57 |
+
if DEBUG_MODE: print(f"Exiting load_model function...")
|
58 |
+
|
59 |
+
return model, fake_model
|
60 |
+
|
61 |
+
|
62 |
+
def split_input_stereo_channels(audio_path):
|
63 |
+
|
64 |
+
if DEBUG_MODE: print(f"Entering split_input_stereo_channels function...")
|
65 |
+
|
66 |
+
ext = os.path.splitext(audio_path)[1].lower()
|
67 |
+
|
68 |
+
if ext == ".wav":
|
69 |
+
audio = AudioSegment.from_wav(audio_path)
|
70 |
+
elif ext == ".mp3":
|
71 |
+
audio = AudioSegment.from_file(audio_path, format="mp3")
|
72 |
+
else:
|
73 |
+
raise ValueError(f"Unsupported file format for: {audio_path}")
|
74 |
+
|
75 |
+
channels = audio.split_to_mono()
|
76 |
+
|
77 |
+
if len(channels) != 2:
|
78 |
+
raise ValueError(f"Audio {audio_path} has {len(channels)} channels (instead of 2).")
|
79 |
+
|
80 |
+
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
|
81 |
+
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
|
82 |
+
|
83 |
+
if DEBUG_MODE: print(f"Exited split_input_stereo_channels function.")
|
84 |
+
|
85 |
+
|
86 |
+
def format_audio(audio_path):
|
87 |
+
|
88 |
+
if DEBUG_MODE: print(f"Entering format_audio function...")
|
89 |
+
|
90 |
+
input_audio, sample_rate = torchaudio.load(audio_path)
|
91 |
+
|
92 |
+
if input_audio.shape[0] == 2:
|
93 |
+
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
94 |
+
|
95 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
|
96 |
+
input_audio = resampler(input_audio)
|
97 |
+
input_audio = input_audio.squeeze()
|
98 |
+
|
99 |
+
if DEBUG_MODE: print(f"Exited format_audio function.")
|
100 |
+
|
101 |
+
return input_audio, RESAMPLING_FREQ
|
102 |
+
|
103 |
+
|
104 |
+
def process_waveforms():
|
105 |
+
|
106 |
+
if DEBUG_MODE: print(f"Entering process_waveforms function...")
|
107 |
+
|
108 |
+
left_waveform, _ = format_audio(LEFT_CHANNEL_TEMP_PATH)
|
109 |
+
right_waveform, _ = format_audio(RIGHT_CHANNEL_TEMP_PATH)
|
110 |
+
|
111 |
+
# TODO should this be equal to compute_type?
|
112 |
+
left_waveform = left_waveform.numpy().astype("float32")
|
113 |
+
right_waveform = right_waveform.numpy().astype("float32")
|
114 |
+
|
115 |
+
if DEBUG_MODE: print(f"Exited process_waveforms function.")
|
116 |
+
|
117 |
+
return left_waveform, right_waveform
|
118 |
+
|
119 |
+
|
120 |
+
def transcribe_audio_no_fast_model(model, audio_path):
|
121 |
+
|
122 |
+
if DEBUG_MODE: print(f"Entering transcribe_audio_no_fast_model function...")
|
123 |
+
|
124 |
+
result = whisper_ts.transcribe(
|
125 |
+
model,
|
126 |
+
audio_path,
|
127 |
+
beam_size=5,
|
128 |
+
best_of=5,
|
129 |
+
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
130 |
+
vad=False,
|
131 |
+
detect_disfluencies=True,
|
132 |
+
)
|
133 |
+
|
134 |
+
words = []
|
135 |
+
for segment in result.get('segments', []):
|
136 |
+
for word in segment.get('words', []):
|
137 |
+
word_text = word.get('word', '').strip()
|
138 |
+
if word_text.startswith(' '):
|
139 |
+
word_text = word_text[1:]
|
140 |
+
|
141 |
+
words.append({
|
142 |
+
'word': word_text,
|
143 |
+
'start': word.get('start', 0),
|
144 |
+
'end': word.get('end', 0),
|
145 |
+
'confidence': word.get('confidence', 0)
|
146 |
+
})
|
147 |
+
|
148 |
+
return {
|
149 |
+
'audio_path': audio_path,
|
150 |
+
'text': result['text'].strip(),
|
151 |
+
'segments': result.get('segments', []),
|
152 |
+
'words': words,
|
153 |
+
'duration': result.get('duration', 0),
|
154 |
+
'success': True
|
155 |
+
}
|
156 |
+
|
157 |
+
if DEBUG_MODE: print(f"Exited transcribe_audio_no_fast_model function.")
|
158 |
+
|
159 |
+
|
160 |
+
def transcribe_channels(left_waveform, right_waveform, model, use_v2_fast, fake_model):
|
161 |
+
|
162 |
+
if DEBUG_MODE: print(f"Entering transcribe_channels function...")
|
163 |
+
|
164 |
+
# HACK we need to do this for strange reasons.
|
165 |
+
# If we don't do this, we get:
|
166 |
+
#Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
|
167 |
+
fake_result = whisper_ts.transcribe(
|
168 |
+
fake_model,
|
169 |
+
FAKE_AUDIO_PATH,
|
170 |
+
beam_size=1,
|
171 |
+
)
|
172 |
+
|
173 |
+
if use_v2_fast:
|
174 |
+
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
175 |
+
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
176 |
+
left_result = list(left_result)
|
177 |
+
right_result = list(right_result)
|
178 |
+
else:
|
179 |
+
left_result = transcribe_audio_no_fast_model(model, left_waveform)
|
180 |
+
right_result = transcribe_audio_no_fast_model(model, right_waveform)
|
181 |
+
|
182 |
+
if DEBUG_MODE: print(f"Exited transcribe_channels function.")
|
183 |
+
|
184 |
+
return left_result, right_result
|
185 |
+
|
186 |
+
|
187 |
+
# TODO refactor and rename this function
|
188 |
+
def post_process_transcription(transcription, max_repeats=2):
|
189 |
+
|
190 |
+
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
191 |
+
|
192 |
+
cleaned_tokens = []
|
193 |
+
repetition_count = 0
|
194 |
+
previous_token = None
|
195 |
+
|
196 |
+
for token in tokens:
|
197 |
+
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
|
198 |
+
|
199 |
+
if reduced_token == previous_token:
|
200 |
+
repetition_count += 1
|
201 |
+
if repetition_count <= max_repeats:
|
202 |
+
cleaned_tokens.append(reduced_token)
|
203 |
+
else:
|
204 |
+
repetition_count = 1
|
205 |
+
cleaned_tokens.append(reduced_token)
|
206 |
+
|
207 |
+
previous_token = reduced_token
|
208 |
+
|
209 |
+
cleaned_transcription = " ".join(cleaned_tokens)
|
210 |
+
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
|
211 |
+
|
212 |
+
return cleaned_transcription
|
213 |
+
|
214 |
+
# TODO not used right now, decide to use it or not
|
215 |
+
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
216 |
+
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
|
217 |
+
merged_transcription = ''
|
218 |
+
current_speaker = None
|
219 |
+
current_segment = []
|
220 |
+
|
221 |
+
for i in range(1, len(segments) - 1, 2):
|
222 |
+
speaker_tag = segments[i]
|
223 |
+
text = segments[i + 1].strip()
|
224 |
+
|
225 |
+
speaker = re.search(r'\d{2}', speaker_tag).group()
|
226 |
+
|
227 |
+
if speaker == current_speaker:
|
228 |
+
current_segment.append(text)
|
229 |
+
else:
|
230 |
+
if current_speaker is not None:
|
231 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
232 |
+
current_speaker = speaker
|
233 |
+
current_segment = [text]
|
234 |
+
|
235 |
+
if current_speaker is not None:
|
236 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
237 |
+
|
238 |
+
return merged_transcription.strip()
|
239 |
+
|
240 |
+
|
241 |
+
def get_segments(result, speaker_label, use_v2_fast):
|
242 |
+
|
243 |
+
if DEBUG_MODE: print(f"Entering get_segments function...")
|
244 |
+
|
245 |
+
if use_v2_fast:
|
246 |
+
segments = result
|
247 |
+
final_segments = [
|
248 |
+
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
249 |
+
for seg in segments if seg.text
|
250 |
+
]
|
251 |
+
else:
|
252 |
+
segments = result.get("segments", [])
|
253 |
+
if not segments:
|
254 |
+
final_segments = []
|
255 |
+
final_segments = [
|
256 |
+
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label,
|
257 |
+
post_process_transcription(seg.get("text", "").strip()))
|
258 |
+
for seg in segments if seg.get("text")
|
259 |
+
]
|
260 |
+
|
261 |
+
if DEBUG_MODE: print(f"EXited get_segments function.")
|
262 |
+
|
263 |
+
return final_segments
|
264 |
+
|
265 |
+
|
266 |
+
def post_process_transcripts(left_result, right_result, use_v2_fast):
|
267 |
+
|
268 |
+
if DEBUG_MODE: print(f"Entering post_process_transcripts function...")
|
269 |
+
|
270 |
+
left_segs = get_segments(left_result, "Speaker 1", use_v2_fast)
|
271 |
+
right_segs = get_segments(right_result, "Speaker 2", use_v2_fast)
|
272 |
+
|
273 |
+
merged_transcript = sorted(
|
274 |
+
left_segs + right_segs,
|
275 |
+
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
276 |
+
)
|
277 |
+
|
278 |
+
clean_output = ""
|
279 |
+
for start, end, speaker, text in merged_transcript:
|
280 |
+
clean_output += f"[{speaker}]: {text}\n"
|
281 |
+
clean_output = clean_output.strip()
|
282 |
+
|
283 |
+
if DEBUG_MODE: print(f"Exited post_process_transcripts function.")
|
284 |
+
|
285 |
+
return clean_output
|
286 |
+
|
287 |
+
|
288 |
+
def cleanup_temp_files(*file_paths):
|
289 |
+
|
290 |
+
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
|
291 |
+
|
292 |
+
if DEBUG_MODE: print(f"File paths to remove: {file_paths}")
|
293 |
+
|
294 |
+
for path in file_paths:
|
295 |
+
if path and os.path.exists(path):
|
296 |
+
if DEBUG_MODE: print(f"Removing path: {path}")
|
297 |
+
os.remove(path)
|
298 |
+
|
299 |
+
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
|
300 |
+
|
301 |
+
|
302 |
+
def generate(audio_path, use_v2_fast):
|
303 |
+
|
304 |
+
if DEBUG_MODE: print(f"Entering generate function...")
|
305 |
+
|
306 |
+
device, compute_type = get_settings()
|
307 |
+
model, fake_model = load_model(use_v2_fast, device, compute_type)
|
308 |
+
split_input_stereo_channels(audio_path)
|
309 |
+
left_waveform, right_waveform = process_waveforms()
|
310 |
+
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model, use_v2_fast, fake_model)
|
311 |
+
output = post_process_transcripts(left_result, right_result, use_v2_fast)
|
312 |
+
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
313 |
+
|
314 |
+
if DEBUG_MODE: print(f"Exited generate function.")
|
315 |
+
|
316 |
+
return output
|
317 |
+
|
318 |
+
|