Spaces:
Build error
Build error
| from typing import Dict, Any | |
| import datasets | |
| import evaluate | |
| import numpy as np | |
| from evaluate.utils.file_utils import add_start_docstrings | |
| _DESCRIPTION = """ | |
| The "top-5 error" is the percentage of times that the target label does not appear among the 5 highest-probability predictions. It can be computed with: | |
| Top-5 Error Rate = 1 - Top-5 Accuracy | |
| or equivalently: | |
| Top-5 Error Rate = (Number of incorrect top-5 predictions) / (Total number of cases processed) | |
| Where: | |
| - Top-5 Accuracy: The proportion of cases where the true label is among the model's top 5 predicted classes. | |
| - Incorrect top-5 prediction: The true label is not in the top 5 predicted classes (ranked by probability). | |
| """ | |
| _KWARGS_DESCRIPTION = """ | |
| Args: | |
| predictions (`list` of `list` of `int`): Predicted labels. Each inner list should contain the top-5 predicted class indices. | |
| references (`list` of `int`): Ground truth labels. | |
| Returns: | |
| top5_error_rate (`float`): Top-5 Error Rate score. Minimum possible value is 0. Maximum possible value is 1.0. | |
| Examples: | |
| >>> metric = evaluate.load("top5_error_rate") | |
| >>> results = metric.compute( | |
| ... references=[0, 1, 2], | |
| ... predictions=[[0, 1, 2, 3, 4], [1, 0, 2, 3, 4], [2, 0, 1, 3, 4]] | |
| ... ) | |
| >>> print(results) | |
| {'top5_error_rate': 0.0} | |
| """ | |
| _CITATION = """ | |
| """ | |
| class Top5ErrorRate(evaluate.Metric): | |
| def _info(self): | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('float32'))), | |
| 'references': datasets.Sequence(datasets.Value('int32')), | |
| } | |
| if self.config_name == 'multilabel' | |
| else { | |
| 'predictions': datasets.Sequence(datasets.Value('float32')), | |
| 'references': datasets.Value('int32'), | |
| } | |
| ), | |
| reference_urls=[], | |
| ) | |
| def _compute( | |
| self, | |
| *, | |
| predictions: list[list[float]] = None, | |
| references: list[int] = None, | |
| **kwargs, | |
| ) -> Dict[str, Any]: | |
| # to numpy array | |
| outputs = np.array(predictions) | |
| labels = np.array(references) | |
| # Top-1 ACC | |
| pred = outputs.argmax(axis=1) | |
| acc = (pred == labels).mean() | |
| # Top-5 Error rate | |
| top5_indices = np.argpartition(outputs, -5, axis=1)[:, -5:] | |
| # 使用广播机制直接比较 | |
| # 使用np.any的axis参数直接在最后一个维度上检查是否存在匹配 | |
| correct = np.any(top5_indices == labels[:, np.newaxis], axis=1) | |
| top5_error_rate = 1 - correct.mean() | |
| return {'accuracy': float(acc), 'top5_error_rate': float(top5_error_rate)} | |