File size: 2,945 Bytes
afa91bc
 
 
 
ab21cd8
afa91bc
 
 
 
 
 
 
 
 
 
 
 
 
 
ab21cd8
afa91bc
 
ab21cd8
afa91bc
ab21cd8
 
 
 
 
afa91bc
ab21cd8
afa91bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a526ab2
 
afa91bc
a526ab2
7c54d17
a526ab2
 
7c54d17
afa91bc
 
 
 
 
a526ab2
 
 
 
 
afa91bc
ab21cd8
a526ab2
ab21cd8
 
 
 
 
afa91bc
a526ab2
 
 
 
 
 
ab21cd8
afa91bc
a526ab2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from typing import Dict, Any

import datasets
import evaluate
import numpy as np
from evaluate.utils.file_utils import add_start_docstrings

_DESCRIPTION = """
The "top-5 error" is the percentage of times that the target label does not appear among the 5 highest-probability predictions. It can be computed with:
Top-5 Error Rate = 1 - Top-5 Accuracy
or equivalently:
Top-5 Error Rate = (Number of incorrect top-5 predictions) / (Total number of cases processed)
 Where:
- Top-5 Accuracy: The proportion of cases where the true label is among the model's top 5 predicted classes.
- Incorrect top-5 prediction: The true label is not in the top 5 predicted classes (ranked by probability).
"""

_KWARGS_DESCRIPTION = """
Args:
    predictions (`list` of `list` of `int`): Predicted labels. Each inner list should contain the top-5 predicted class indices.
    references (`list` of `int`): Ground truth labels.
Returns:
    top5_error_rate (`float`): Top-5 Error Rate score. Minimum possible value is 0. Maximum possible value is 1.0.
Examples:
    >>> metric = evaluate.load("top5_error_rate")
    >>> results = metric.compute(
    ...     references=[0, 1, 2], 
    ...     predictions=[[0, 1, 2, 3, 4], [1, 0, 2, 3, 4], [2, 0, 1, 3, 4]]
    ... )
    >>> print(results)
    {'top5_error_rate': 0.0}
"""

_CITATION = """
"""


@add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Top5ErrorRate(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
                    'references': datasets.Sequence(datasets.Value('int32')),
                }
                if self.config_name == 'multilabel'
                else {
                    'predictions': datasets.Sequence(datasets.Value('float32')),
                    'references': datasets.Value('int32'),
                }
            ),
            reference_urls=[],
        )

    def _compute(
        self,
        *,
        predictions: list[list[float]] = None,
        references: list[int] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        # to numpy array
        outputs = np.array(predictions)
        labels = np.array(references)

        # Top-1 ACC
        pred = outputs.argmax(axis=1)
        acc = (pred == labels).mean()

        # Top-5 Error rate
        top5_indices = np.argpartition(outputs, -5, axis=1)[:, -5:]

        # 使用广播机制直接比较
        # 使用np.any的axis参数直接在最后一个维度上检查是否存在匹配
        correct = np.any(top5_indices == labels[:, np.newaxis], axis=1)
        top5_error_rate = 1 - correct.mean()

        return {'accuracy': float(acc), 'top5_error_rate': float(top5_error_rate)}