Spaces:
Build error
Build error
update
Browse files- README.md +14 -1
- top5_error_rate.py +8 -3
README.md
CHANGED
|
@@ -7,6 +7,19 @@ sdk: gradio
|
|
| 7 |
sdk_version: 3.19.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
sdk_version: 3.19.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- evaluate
|
| 12 |
+
- metric
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Metric Card for Top-5 error rate
|
| 16 |
+
|
| 17 |
+
## Metric Description
|
| 18 |
+
|
| 19 |
+
The "top-5 error" is the percentage of times that the target label does not appear among the 5 highest-probability predictions. It can be computed with:
|
| 20 |
+
Top-5 Error Rate = 1 - Top-5 Accuracy
|
| 21 |
+
or equivalently:
|
| 22 |
+
Top-5 Error Rate = (Number of incorrect top-5 predictions) / (Total number of cases processed)
|
| 23 |
+
Where:
|
| 24 |
+
- Top-5 Accuracy: The proportion of cases where the true label is among the model's top 5 predicted classes.
|
| 25 |
+
- Incorrect top-5 prediction: The true label is not in the top 5 predicted classes (ranked by probability).
|
top5_error_rate.py
CHANGED
|
@@ -2,7 +2,6 @@ from typing import Dict, Any
|
|
| 2 |
|
| 3 |
import datasets
|
| 4 |
import evaluate
|
| 5 |
-
import numpy as np
|
| 6 |
from evaluate.utils.file_utils import add_start_docstrings
|
| 7 |
|
| 8 |
_DESCRIPTION = """
|
|
@@ -43,9 +42,16 @@ class Top5ErrorRate(evaluate.Metric):
|
|
| 43 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 44 |
features=datasets.Features(
|
| 45 |
{
|
| 46 |
-
"predictions": datasets.Sequence(
|
|
|
|
|
|
|
| 47 |
"references": datasets.Sequence(datasets.Value("int32")),
|
| 48 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
),
|
| 50 |
reference_urls=[],
|
| 51 |
)
|
|
@@ -57,7 +63,6 @@ class Top5ErrorRate(evaluate.Metric):
|
|
| 57 |
references: list[int] = None,
|
| 58 |
**kwargs,
|
| 59 |
) -> Dict[str, Any]:
|
| 60 |
-
|
| 61 |
total = len(references)
|
| 62 |
correct = sum(1 for pred, ref in zip(predictions, references) if ref in pred)
|
| 63 |
|
|
|
|
| 2 |
|
| 3 |
import datasets
|
| 4 |
import evaluate
|
|
|
|
| 5 |
from evaluate.utils.file_utils import add_start_docstrings
|
| 6 |
|
| 7 |
_DESCRIPTION = """
|
|
|
|
| 42 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 43 |
features=datasets.Features(
|
| 44 |
{
|
| 45 |
+
"predictions": datasets.Sequence(
|
| 46 |
+
datasets.Sequence(datasets.Value("int32"))
|
| 47 |
+
),
|
| 48 |
"references": datasets.Sequence(datasets.Value("int32")),
|
| 49 |
}
|
| 50 |
+
if self.config_name == "multilabel"
|
| 51 |
+
else {
|
| 52 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
| 53 |
+
"references": datasets.Value("int32"),
|
| 54 |
+
}
|
| 55 |
),
|
| 56 |
reference_urls=[],
|
| 57 |
)
|
|
|
|
| 63 |
references: list[int] = None,
|
| 64 |
**kwargs,
|
| 65 |
) -> Dict[str, Any]:
|
|
|
|
| 66 |
total = len(references)
|
| 67 |
correct = sum(1 for pred, ref in zip(predictions, references) if ref in pred)
|
| 68 |
|