Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,37 +2,41 @@ import os
|
|
2 |
import json
|
3 |
import numpy as np
|
4 |
from datasets import load_dataset
|
5 |
-
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
import torch
|
|
|
|
|
7 |
from collections import Counter
|
8 |
import string
|
|
|
|
|
9 |
import pandas as pd
|
10 |
from datetime import datetime
|
11 |
|
12 |
-
# Normalization functions
|
13 |
def normalize_answer(s):
|
14 |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
15 |
def white_space_fix(text): return ' '.join(text.split())
|
16 |
def remove_punc(text):
|
17 |
-
|
|
|
18 |
def lower(text): return text.lower()
|
19 |
-
return white_space_fix(remove_articles(remove_punc(lower(s)))
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
def f1_score_qa(pred, truth):
|
26 |
-
pred_tokens = normalize_answer(pred).split()
|
27 |
-
truth_tokens = normalize_answer(truth).split()
|
28 |
-
common = Counter(pred_tokens) & Counter(truth_tokens)
|
29 |
num_same = sum(common.values())
|
30 |
if num_same == 0: return 0
|
31 |
-
precision = num_same / len(
|
32 |
-
recall = num_same / len(
|
33 |
return (2 * precision * recall) / (precision + recall)
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
def get_qa_confidence(model, tokenizer, question, context):
|
37 |
inputs = tokenizer(
|
38 |
question, context,
|
@@ -63,35 +67,46 @@ def get_qa_confidence(model, tokenizer, question, context):
|
|
63 |
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
64 |
return answer.strip(), float(confidence)
|
65 |
|
66 |
-
def run_evaluation(num_samples=
|
67 |
-
#
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
token=os.getenv("HF_TOKEN", True) # True allows anonymous access
|
72 |
-
)
|
73 |
-
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
74 |
|
75 |
-
# Load model
|
76 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
77 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
78 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
results = []
|
81 |
-
for example in test_data:
|
|
|
|
|
82 |
context = example["context"]
|
83 |
question = example["question"]
|
84 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
85 |
|
86 |
-
|
87 |
|
88 |
results.append({
|
89 |
-
"
|
90 |
-
"
|
91 |
-
"
|
92 |
-
"
|
93 |
-
"
|
94 |
-
"
|
95 |
})
|
96 |
|
97 |
# Generate report
|
@@ -99,31 +114,71 @@ def run_evaluation(num_samples=100):
|
|
99 |
report = f"""
|
100 |
Evaluation Results (n={len(df)})
|
101 |
=================
|
102 |
-
Exact Match: {df['
|
103 |
-
F1 Score: {df['
|
104 |
-
Avg Confidence: {df['
|
105 |
-
High-Confidence Accuracy: {
|
106 |
-
df[df['
|
107 |
"""
|
108 |
|
109 |
-
# Save
|
110 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
111 |
results_file = f"eval_results_{timestamp}.json"
|
112 |
with open(results_file, 'w') as f:
|
113 |
json.dump({
|
114 |
-
"
|
115 |
"metrics": {
|
116 |
-
"exact_match": float(df['
|
117 |
-
"f1": float(df['
|
118 |
-
"
|
119 |
},
|
120 |
"samples": results
|
121 |
}, f, indent=2)
|
122 |
|
123 |
return report, df, results_file
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if __name__ == "__main__":
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import json
|
3 |
import numpy as np
|
4 |
from datasets import load_dataset
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
|
6 |
import torch
|
7 |
+
from sklearn.metrics import f1_score
|
8 |
+
import re
|
9 |
from collections import Counter
|
10 |
import string
|
11 |
+
from huggingface_hub import login
|
12 |
+
import gradio as gr
|
13 |
import pandas as pd
|
14 |
from datetime import datetime
|
15 |
|
16 |
+
# Normalization functions (identical to extractor)
|
17 |
def normalize_answer(s):
|
18 |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
19 |
def white_space_fix(text): return ' '.join(text.split())
|
20 |
def remove_punc(text):
|
21 |
+
exclude = set(string.punctuation)
|
22 |
+
return ''.join(ch for ch in text if ch not in exclude)
|
23 |
def lower(text): return text.lower()
|
24 |
+
return white_space_fix(remove_articles(remove_punc(lower(s)))
|
25 |
|
26 |
+
def f1_score_qa(prediction, ground_truth):
|
27 |
+
prediction_tokens = normalize_answer(prediction).split()
|
28 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
29 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
|
|
|
|
|
|
|
|
30 |
num_same = sum(common.values())
|
31 |
if num_same == 0: return 0
|
32 |
+
precision = 1.0 * num_same / len(prediction_tokens)
|
33 |
+
recall = 1.0 * num_same / len(ground_truth_tokens)
|
34 |
return (2 * precision * recall) / (precision + recall)
|
35 |
|
36 |
+
def exact_match_score(prediction, ground_truth):
|
37 |
+
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
38 |
+
|
39 |
+
# Identical confidence calculation to extractor
|
40 |
def get_qa_confidence(model, tokenizer, question, context):
|
41 |
inputs = tokenizer(
|
42 |
question, context,
|
|
|
67 |
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
68 |
return answer.strip(), float(confidence)
|
69 |
|
70 |
+
def run_evaluation(num_samples, progress=gr.Progress()):
|
71 |
+
# Authentication
|
72 |
+
hf_token = os.getenv("EVAL_TOKEN")
|
73 |
+
if hf_token:
|
74 |
+
login(token=hf_token)
|
|
|
|
|
|
|
75 |
|
76 |
+
# Load model same as extractor
|
77 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
79 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
|
80 |
+
|
81 |
+
progress(0.1, desc="Loading CUAD dataset...")
|
82 |
+
try:
|
83 |
+
dataset = load_dataset(
|
84 |
+
"theatticusproject/cuad-qa",
|
85 |
+
trust_remote_code=True,
|
86 |
+
token=hf_token
|
87 |
+
)
|
88 |
+
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
89 |
+
print(f"β Loaded {len(test_data)} samples")
|
90 |
+
except Exception as e:
|
91 |
+
return f"β Dataset load failed: {str(e)}", pd.DataFrame(), None
|
92 |
|
93 |
results = []
|
94 |
+
for i, example in enumerate(test_data):
|
95 |
+
progress(0.2 + 0.7*i/num_samples, desc=f"Evaluating {i+1}/{num_samples}")
|
96 |
+
|
97 |
context = example["context"]
|
98 |
question = example["question"]
|
99 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
100 |
|
101 |
+
pred_answer, confidence = get_qa_confidence(model, tokenizer, question, context)
|
102 |
|
103 |
results.append({
|
104 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
105 |
+
"Prediction": pred_answer,
|
106 |
+
"Truth": gt_answer,
|
107 |
+
"Confidence": confidence,
|
108 |
+
"Exact Match": exact_match_score(pred_answer, gt_answer),
|
109 |
+
"F1": f1_score_qa(pred_answer, gt_answer)
|
110 |
})
|
111 |
|
112 |
# Generate report
|
|
|
114 |
report = f"""
|
115 |
Evaluation Results (n={len(df)})
|
116 |
=================
|
117 |
+
- Exact Match: {df['Exact Match'].mean():.1%}
|
118 |
+
- F1 Score: {df['F1'].mean():.1%}
|
119 |
+
- Avg Confidence: {df['Confidence'].mean():.1%}
|
120 |
+
- High-Confidence (>80%) Accuracy: {
|
121 |
+
df[df['Confidence'] > 0.8]['Exact Match'].mean():.1%}
|
122 |
"""
|
123 |
|
124 |
+
# Save results
|
125 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
126 |
results_file = f"eval_results_{timestamp}.json"
|
127 |
with open(results_file, 'w') as f:
|
128 |
json.dump({
|
129 |
+
"model": model_name,
|
130 |
"metrics": {
|
131 |
+
"exact_match": float(df['Exact Match'].mean()),
|
132 |
+
"f1": float(df['F1'].mean()),
|
133 |
+
"avg_confidence": float(df['Confidence'].mean())
|
134 |
},
|
135 |
"samples": results
|
136 |
}, f, indent=2)
|
137 |
|
138 |
return report, df, results_file
|
139 |
|
140 |
+
def create_gradio_interface():
|
141 |
+
with gr.Blocks(title="CUAD Evaluator") as demo:
|
142 |
+
gr.Markdown("## ποΈ CUAD QA Model Evaluation")
|
143 |
+
|
144 |
+
with gr.Row():
|
145 |
+
num_samples = gr.Slider(10, 500, value=100, step=10,
|
146 |
+
label="Number of Samples")
|
147 |
+
eval_btn = gr.Button("π Run Evaluation", variant="primary")
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
report = gr.Markdown("Results will appear here...")
|
151 |
+
results_table = gr.Dataframe(headers=["Question", "Prediction", "Confidence", "Exact Match"])
|
152 |
+
|
153 |
+
download = gr.File(label="Download Results", visible=False)
|
154 |
+
|
155 |
+
def run_and_display(num_samples):
|
156 |
+
report_text, df, file = run_evaluation(num_samples)
|
157 |
+
return (
|
158 |
+
report_text,
|
159 |
+
df[["Question", "Prediction", "Confidence", "Exact Match"]],
|
160 |
+
gr.File(visible=True, value=file)
|
161 |
+
)
|
162 |
+
|
163 |
+
eval_btn.click(
|
164 |
+
fn=run_and_display,
|
165 |
+
inputs=num_samples,
|
166 |
+
outputs=[report, results_table, download]
|
167 |
+
)
|
168 |
+
|
169 |
+
return demo
|
170 |
+
|
171 |
if __name__ == "__main__":
|
172 |
+
# Verify CUDA
|
173 |
+
if torch.cuda.is_available():
|
174 |
+
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
|
175 |
+
else:
|
176 |
+
print("! Using CPU")
|
177 |
+
|
178 |
+
# Launch Gradio
|
179 |
+
demo = create_gradio_interface()
|
180 |
+
demo.launch(
|
181 |
+
server_name="0.0.0.0",
|
182 |
+
server_port=7860,
|
183 |
+
share=True
|
184 |
+
)
|