Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,151 +4,126 @@ import numpy as np
|
|
4 |
from datasets import load_dataset
|
5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
import torch
|
7 |
-
from sklearn.metrics import f1_score
|
8 |
-
import re
|
9 |
from collections import Counter
|
10 |
import string
|
11 |
-
from huggingface_hub import login
|
12 |
-
import gradio as gr
|
13 |
import pandas as pd
|
14 |
from datetime import datetime
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
|
17 |
-
# Normalization functions
|
18 |
def normalize_answer(s):
|
19 |
-
def remove_articles(text):
|
20 |
-
|
21 |
-
def
|
22 |
-
return '
|
23 |
-
def
|
24 |
-
exclude = set(string.punctuation)
|
25 |
-
return ''.join(ch for ch in text if ch not in exclude)
|
26 |
-
def lower(text):
|
27 |
-
return text.lower()
|
28 |
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
num_same = sum(common.values())
|
35 |
-
if num_same == 0:
|
36 |
-
|
37 |
-
|
38 |
-
recall = 1.0 * num_same / len(ground_truth_tokens)
|
39 |
return (2 * precision * recall) / (precision + recall)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Identical confidence calculation to extractor
|
45 |
-
def calculate_confidence(model, tokenizer, question, context):
|
46 |
inputs = tokenizer(
|
47 |
-
question,
|
48 |
-
context,
|
49 |
return_tensors="pt",
|
50 |
truncation=True,
|
51 |
max_length=512,
|
52 |
stride=128,
|
53 |
padding=True
|
54 |
)
|
55 |
-
|
56 |
if torch.cuda.is_available():
|
57 |
-
inputs = {k:
|
58 |
model = model.cuda()
|
59 |
-
|
60 |
with torch.no_grad():
|
61 |
outputs = model(**inputs)
|
62 |
-
|
63 |
start_probs = torch.softmax(outputs.start_logits, dim=1)
|
64 |
end_probs = torch.softmax(outputs.end_logits, dim=1)
|
65 |
answer_start = torch.argmax(outputs.start_logits)
|
66 |
answer_end = torch.argmax(outputs.end_logits) + 1
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
|
73 |
-
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
74 |
-
|
75 |
-
return answer, float(confidence)
|
76 |
|
77 |
def run_evaluation(num_samples=100):
|
78 |
-
#
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
# Load model
|
83 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
84 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
85 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
86 |
|
87 |
-
# Load CUAD dataset
|
88 |
-
dataset = load_dataset("theatticusproject/cuad-qa", token=token)
|
89 |
-
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
90 |
-
|
91 |
results = []
|
92 |
for example in test_data:
|
93 |
context = example["context"]
|
94 |
question = example["question"]
|
95 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
96 |
|
97 |
-
|
98 |
|
99 |
results.append({
|
100 |
-
"question": question,
|
101 |
-
"prediction":
|
102 |
-
"
|
103 |
-
"
|
104 |
-
"
|
105 |
-
"
|
106 |
})
|
107 |
|
108 |
# Generate report
|
109 |
df = pd.DataFrame(results)
|
110 |
-
avg_metrics = {
|
111 |
-
"exact_match": df["exact_match"].mean() * 100,
|
112 |
-
"f1": df["f1"].mean() * 100,
|
113 |
-
"confidence": df["confidence"].mean() * 100
|
114 |
-
}
|
115 |
-
|
116 |
-
# Confidence calibration analysis
|
117 |
-
high_conf_correct = df[(df["confidence"] > 0.8) & (df["exact_match"] == 1)].shape[0]
|
118 |
-
high_conf_total = df[df["confidence"] > 0.8].shape[0]
|
119 |
-
|
120 |
report = f"""
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
- Avg Confidence: {avg_metrics['confidence']:.2f}%
|
129 |
-
- High-Confidence (>80%) Accuracy: {high_conf_correct}/{high_conf_total} ({high_conf_correct/max(1,high_conf_total)*100:.1f}%)
|
130 |
-
|
131 |
-
Confidence vs Accuracy:
|
132 |
-
{df[['confidence', 'exact_match']].corr().iloc[0,1]:.3f} correlation
|
133 |
"""
|
134 |
|
135 |
-
# Save
|
136 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
137 |
-
results_file = f"
|
138 |
-
with open(results_file,
|
139 |
json.dump({
|
140 |
-
"
|
141 |
-
"
|
142 |
-
|
143 |
-
"
|
144 |
-
"
|
145 |
-
}
|
|
|
146 |
}, f, indent=2)
|
147 |
|
148 |
return report, df, results_file
|
149 |
|
150 |
if __name__ == "__main__":
|
151 |
-
report, df, _ = run_evaluation()
|
152 |
print(report)
|
153 |
print("\nSample predictions:")
|
154 |
-
print(df.head())
|
|
|
4 |
from datasets import load_dataset
|
5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
import torch
|
|
|
|
|
7 |
from collections import Counter
|
8 |
import string
|
|
|
|
|
9 |
import pandas as pd
|
10 |
from datetime import datetime
|
|
|
11 |
|
12 |
+
# Normalization functions
|
13 |
def normalize_answer(s):
|
14 |
+
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
15 |
+
def white_space_fix(text): return ' '.join(text.split())
|
16 |
+
def remove_punc(text):
|
17 |
+
return ''.join(ch for ch in text if ch not in set(string.punctuation))
|
18 |
+
def lower(text): return text.lower()
|
|
|
|
|
|
|
|
|
19 |
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
20 |
|
21 |
+
# Metrics
|
22 |
+
def exact_match_score(pred, truth):
|
23 |
+
return int(normalize_answer(pred) == normalize_answer(truth))
|
24 |
+
|
25 |
+
def f1_score_qa(pred, truth):
|
26 |
+
pred_tokens = normalize_answer(pred).split()
|
27 |
+
truth_tokens = normalize_answer(truth).split()
|
28 |
+
common = Counter(pred_tokens) & Counter(truth_tokens)
|
29 |
num_same = sum(common.values())
|
30 |
+
if num_same == 0: return 0
|
31 |
+
precision = num_same / len(pred_tokens)
|
32 |
+
recall = num_same / len(truth_tokens)
|
|
|
33 |
return (2 * precision * recall) / (precision + recall)
|
34 |
|
35 |
+
# Identical to extractor's QA confidence
|
36 |
+
def get_qa_confidence(model, tokenizer, question, context):
|
|
|
|
|
|
|
37 |
inputs = tokenizer(
|
38 |
+
question, context,
|
|
|
39 |
return_tensors="pt",
|
40 |
truncation=True,
|
41 |
max_length=512,
|
42 |
stride=128,
|
43 |
padding=True
|
44 |
)
|
|
|
45 |
if torch.cuda.is_available():
|
46 |
+
inputs = {k:v.cuda() for k,v in inputs.items()}
|
47 |
model = model.cuda()
|
48 |
+
|
49 |
with torch.no_grad():
|
50 |
outputs = model(**inputs)
|
51 |
+
|
52 |
start_probs = torch.softmax(outputs.start_logits, dim=1)
|
53 |
end_probs = torch.softmax(outputs.end_logits, dim=1)
|
54 |
answer_start = torch.argmax(outputs.start_logits)
|
55 |
answer_end = torch.argmax(outputs.end_logits) + 1
|
56 |
|
57 |
+
confidence = np.sqrt(
|
58 |
+
start_probs[0, answer_start].item() *
|
59 |
+
end_probs[0, answer_end-1].item()
|
60 |
+
)
|
61 |
|
62 |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
|
63 |
+
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
64 |
+
return answer.strip(), float(confidence)
|
|
|
65 |
|
66 |
def run_evaluation(num_samples=100):
|
67 |
+
# Load CUAD with remote code trust
|
68 |
+
dataset = load_dataset(
|
69 |
+
"theatticusproject/cuad-qa",
|
70 |
+
trust_remote_code=True,
|
71 |
+
token=os.getenv("HF_TOKEN", True) # True allows anonymous access
|
72 |
+
)
|
73 |
+
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
74 |
|
75 |
+
# Load model
|
76 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
77 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
78 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
79 |
|
|
|
|
|
|
|
|
|
80 |
results = []
|
81 |
for example in test_data:
|
82 |
context = example["context"]
|
83 |
question = example["question"]
|
84 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
85 |
|
86 |
+
pred, conf = get_qa_confidence(model, tokenizer, question, context)
|
87 |
|
88 |
results.append({
|
89 |
+
"question": question[:100] + "..." if len(question) > 100 else question,
|
90 |
+
"prediction": pred,
|
91 |
+
"confidence": conf,
|
92 |
+
"exact_match": exact_match_score(pred, gt_answer),
|
93 |
+
"f1": f1_score_qa(pred, gt_answer),
|
94 |
+
"ground_truth": gt_answer
|
95 |
})
|
96 |
|
97 |
# Generate report
|
98 |
df = pd.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
report = f"""
|
100 |
+
Evaluation Results (n={len(df)})
|
101 |
+
=================
|
102 |
+
Exact Match: {df['exact_match'].mean():.1%}
|
103 |
+
F1 Score: {df['f1'].mean():.1%}
|
104 |
+
Avg Confidence: {df['confidence'].mean():.1%}
|
105 |
+
High-Confidence Accuracy: {
|
106 |
+
df[df['confidence'] > 0.8]['exact_match'].mean():.1%}
|
|
|
|
|
|
|
|
|
|
|
107 |
"""
|
108 |
|
109 |
+
# Save
|
110 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
111 |
+
results_file = f"eval_results_{timestamp}.json"
|
112 |
+
with open(results_file, 'w') as f:
|
113 |
json.dump({
|
114 |
+
"config": {"model": model_name, "dataset": "cuad-qa"},
|
115 |
+
"metrics": {
|
116 |
+
"exact_match": float(df['exact_match'].mean()),
|
117 |
+
"f1": float(df['f1'].mean()),
|
118 |
+
"confidence": float(df['confidence'].mean())
|
119 |
+
},
|
120 |
+
"samples": results
|
121 |
}, f, indent=2)
|
122 |
|
123 |
return report, df, results_file
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
+
report, df, _ = run_evaluation(num_samples=50)
|
127 |
print(report)
|
128 |
print("\nSample predictions:")
|
129 |
+
print(df[["question", "confidence", "exact_match"]].head())
|