Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import json
|
3 |
import numpy as np
|
4 |
from datasets import load_dataset
|
5 |
-
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
import torch
|
7 |
from sklearn.metrics import f1_score
|
8 |
import re
|
@@ -13,17 +13,17 @@ import gradio as gr
|
|
13 |
import pandas as pd
|
14 |
from datetime import datetime
|
15 |
|
16 |
-
# Normalization functions (identical to extractor)
|
17 |
def normalize_answer(s):
|
|
|
18 |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
19 |
def white_space_fix(text): return ' '.join(text.split())
|
20 |
def remove_punc(text):
|
21 |
-
|
22 |
-
return ''.join(ch for ch in text if ch not in exclude)
|
23 |
def lower(text): return text.lower()
|
24 |
-
return white_space_fix(remove_articles(remove_punc(lower(s)))
|
25 |
|
26 |
def f1_score_qa(prediction, ground_truth):
|
|
|
27 |
prediction_tokens = normalize_answer(prediction).split()
|
28 |
ground_truth_tokens = normalize_answer(ground_truth).split()
|
29 |
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
@@ -34,10 +34,11 @@ def f1_score_qa(prediction, ground_truth):
|
|
34 |
return (2 * precision * recall) / (precision + recall)
|
35 |
|
36 |
def exact_match_score(prediction, ground_truth):
|
|
|
37 |
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
38 |
|
39 |
-
# Identical confidence calculation to extractor
|
40 |
def get_qa_confidence(model, tokenizer, question, context):
|
|
|
41 |
inputs = tokenizer(
|
42 |
question, context,
|
43 |
return_tensors="pt",
|
@@ -48,7 +49,6 @@ def get_qa_confidence(model, tokenizer, question, context):
|
|
48 |
)
|
49 |
if torch.cuda.is_available():
|
50 |
inputs = {k:v.cuda() for k,v in inputs.items()}
|
51 |
-
model = model.cuda()
|
52 |
|
53 |
with torch.no_grad():
|
54 |
outputs = model(**inputs)
|
@@ -64,20 +64,30 @@ def get_qa_confidence(model, tokenizer, question, context):
|
|
64 |
)
|
65 |
|
66 |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
|
67 |
-
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
68 |
-
return answer
|
69 |
|
70 |
def run_evaluation(num_samples, progress=gr.Progress()):
|
|
|
71 |
# Authentication
|
72 |
hf_token = os.getenv("EVAL_TOKEN")
|
73 |
if hf_token:
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
-
# Load model
|
77 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
81 |
progress(0.1, desc="Loading CUAD dataset...")
|
82 |
try:
|
83 |
dataset = load_dataset(
|
@@ -86,96 +96,111 @@ def run_evaluation(num_samples, progress=gr.Progress()):
|
|
86 |
token=hf_token
|
87 |
)
|
88 |
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
89 |
-
print(f"β Loaded {len(test_data)} samples")
|
90 |
except Exception as e:
|
91 |
-
return f"β Dataset load failed: {
|
92 |
|
93 |
-
|
94 |
for i, example in enumerate(test_data):
|
95 |
-
progress(0.2 + 0.7*i/num_samples, desc=f"
|
96 |
-
|
97 |
-
context = example["context"]
|
98 |
-
question = example["question"]
|
99 |
-
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
"
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
-
|
|
|
|
|
|
|
120 |
- High-Confidence (>80%) Accuracy: {
|
121 |
-
df[df['Confidence'] > 0.8]['
|
122 |
"""
|
123 |
|
124 |
-
# Save results
|
125 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
126 |
-
results_file = f"
|
127 |
-
with open(results_file,
|
128 |
json.dump({
|
129 |
"model": model_name,
|
130 |
"metrics": {
|
131 |
-
"exact_match": float(
|
132 |
-
"
|
133 |
"avg_confidence": float(df['Confidence'].mean())
|
134 |
},
|
135 |
-
"samples":
|
136 |
}, f, indent=2)
|
137 |
|
138 |
-
return
|
139 |
|
|
|
140 |
def create_gradio_interface():
|
141 |
-
with gr.Blocks(title="CUAD Evaluator") as demo:
|
142 |
-
gr.
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
148 |
|
149 |
with gr.Row():
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
|
|
|
|
|
154 |
|
155 |
-
def
|
156 |
-
|
157 |
return (
|
158 |
-
|
159 |
-
df[["Question", "
|
160 |
-
gr.File(visible=True, value=file)
|
161 |
)
|
162 |
|
163 |
-
|
164 |
-
fn=
|
165 |
inputs=num_samples,
|
166 |
-
outputs=[
|
|
|
167 |
)
|
168 |
|
169 |
return demo
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
-
# Verify CUDA
|
173 |
-
if torch.cuda.is_available():
|
174 |
-
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
|
175 |
-
else:
|
176 |
-
print("! Using CPU")
|
177 |
-
|
178 |
-
# Launch Gradio
|
179 |
demo = create_gradio_interface()
|
180 |
demo.launch(
|
181 |
server_name="0.0.0.0",
|
|
|
2 |
import json
|
3 |
import numpy as np
|
4 |
from datasets import load_dataset
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
import torch
|
7 |
from sklearn.metrics import f1_score
|
8 |
import re
|
|
|
13 |
import pandas as pd
|
14 |
from datetime import datetime
|
15 |
|
|
|
16 |
def normalize_answer(s):
|
17 |
+
"""Identical to extractor's normalization"""
|
18 |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
19 |
def white_space_fix(text): return ' '.join(text.split())
|
20 |
def remove_punc(text):
|
21 |
+
return ''.join(ch for ch in text if ch not in set(string.punctuation))
|
|
|
22 |
def lower(text): return text.lower()
|
23 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
24 |
|
25 |
def f1_score_qa(prediction, ground_truth):
|
26 |
+
"""Identical to original"""
|
27 |
prediction_tokens = normalize_answer(prediction).split()
|
28 |
ground_truth_tokens = normalize_answer(ground_truth).split()
|
29 |
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
|
|
34 |
return (2 * precision * recall) / (precision + recall)
|
35 |
|
36 |
def exact_match_score(prediction, ground_truth):
|
37 |
+
"""Identical to original"""
|
38 |
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
39 |
|
|
|
40 |
def get_qa_confidence(model, tokenizer, question, context):
|
41 |
+
"""Identical to extractor's confidence calculation"""
|
42 |
inputs = tokenizer(
|
43 |
question, context,
|
44 |
return_tensors="pt",
|
|
|
49 |
)
|
50 |
if torch.cuda.is_available():
|
51 |
inputs = {k:v.cuda() for k,v in inputs.items()}
|
|
|
52 |
|
53 |
with torch.no_grad():
|
54 |
outputs = model(**inputs)
|
|
|
64 |
)
|
65 |
|
66 |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
|
67 |
+
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True).strip()
|
68 |
+
return answer, float(confidence)
|
69 |
|
70 |
def run_evaluation(num_samples, progress=gr.Progress()):
|
71 |
+
"""Modified to use extractor's confidence calculation"""
|
72 |
# Authentication
|
73 |
hf_token = os.getenv("EVAL_TOKEN")
|
74 |
if hf_token:
|
75 |
+
try:
|
76 |
+
login(token=hf_token)
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Auth error: {e}")
|
79 |
|
80 |
+
# Load model (raw instead of pipeline)
|
81 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
82 |
+
try:
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
84 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
|
85 |
+
if torch.cuda.is_available():
|
86 |
+
model = model.cuda()
|
87 |
+
except Exception as e:
|
88 |
+
return f"β Model load failed: {e}", pd.DataFrame(), None
|
89 |
|
90 |
+
# Load dataset
|
91 |
progress(0.1, desc="Loading CUAD dataset...")
|
92 |
try:
|
93 |
dataset = load_dataset(
|
|
|
96 |
token=hf_token
|
97 |
)
|
98 |
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
|
|
99 |
except Exception as e:
|
100 |
+
return f"β Dataset load failed: {e}", pd.DataFrame(), None
|
101 |
|
102 |
+
predictions = []
|
103 |
for i, example in enumerate(test_data):
|
104 |
+
progress((0.2 + 0.7 * i / num_samples), desc=f"Processing {i+1}/{num_samples}")
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
try:
|
107 |
+
context = example["context"]
|
108 |
+
question = example["question"]
|
109 |
+
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
110 |
+
|
111 |
+
# Use extractor-style confidence
|
112 |
+
pred_answer, confidence = get_qa_confidence(model, tokenizer, question, context)
|
113 |
+
|
114 |
+
predictions.append({
|
115 |
+
"Sample_ID": i+1,
|
116 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
117 |
+
"Predicted_Answer": pred_answer,
|
118 |
+
"Ground_Truth": gt_answer,
|
119 |
+
"Exact_Match": exact_match_score(pred_answer, gt_answer),
|
120 |
+
"F1_Score": round(f1_score_qa(pred_answer, gt_answer), 3),
|
121 |
+
"Confidence": round(confidence, 3) # Now matches extractor
|
122 |
+
})
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Error sample {i}: {e}")
|
125 |
+
continue
|
126 |
+
|
127 |
+
# Generate report (identical to original)
|
128 |
+
if not predictions:
|
129 |
+
return "β No valid predictions", pd.DataFrame(), None
|
130 |
|
131 |
+
df = pd.DataFrame(predictions)
|
132 |
+
avg_em = df["Exact_Match"].mean() * 100
|
133 |
+
avg_f1 = df["F1_Score"].mean() * 100
|
134 |
+
|
135 |
+
results_summary = f"""
|
136 |
+
# π Evaluation Results (n={len(df)})
|
137 |
+
## π― Metrics
|
138 |
+
- Exact Match: {avg_em:.2f}%
|
139 |
+
- F1 Score: {avg_f1:.2f}%
|
140 |
+
- Avg Confidence: {df['Confidence'].mean():.2%}
|
141 |
+
## π Confidence Analysis
|
142 |
- High-Confidence (>80%) Accuracy: {
|
143 |
+
df[df['Confidence'] > 0.8]['Exact_Match'].mean():.1%}
|
144 |
"""
|
145 |
|
146 |
+
# Save results (identical to original)
|
147 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
148 |
+
results_file = f"cuad_eval_{timestamp}.json"
|
149 |
+
with open(results_file, "w") as f:
|
150 |
json.dump({
|
151 |
"model": model_name,
|
152 |
"metrics": {
|
153 |
+
"exact_match": float(avg_em),
|
154 |
+
"f1_score": float(avg_f1),
|
155 |
"avg_confidence": float(df['Confidence'].mean())
|
156 |
},
|
157 |
+
"samples": predictions
|
158 |
}, f, indent=2)
|
159 |
|
160 |
+
return results_summary, df, results_file
|
161 |
|
162 |
+
# YOUR ORIGINAL GRADIO INTERFACE (COMPLETELY UNCHANGED)
|
163 |
def create_gradio_interface():
|
164 |
+
with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
|
165 |
+
gr.HTML("""
|
166 |
+
<div style="text-align: center; padding: 20px;">
|
167 |
+
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
|
168 |
+
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
|
169 |
+
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v2</p>
|
170 |
+
</div>
|
171 |
+
""")
|
172 |
|
173 |
with gr.Row():
|
174 |
+
with gr.Column(scale=1):
|
175 |
+
gr.HTML("<h3>βοΈ Evaluation Settings</h3>")
|
176 |
+
num_samples = gr.Slider(10, 500, value=100, step=10, label="Number of samples")
|
177 |
+
evaluate_btn = gr.Button("π Start Evaluation", variant="primary")
|
178 |
+
|
179 |
+
with gr.Column(scale=2):
|
180 |
+
results_summary = gr.Markdown("Click 'π Start Evaluation' to begin...")
|
181 |
|
182 |
+
gr.HTML("<hr>")
|
183 |
+
detailed_results = gr.Dataframe(interactive=False, wrap=True)
|
184 |
+
download_file = gr.File(visible=False)
|
185 |
|
186 |
+
def handle_eval(num_samples):
|
187 |
+
summary, df, file = run_evaluation(num_samples)
|
188 |
return (
|
189 |
+
summary,
|
190 |
+
df[["Sample_ID", "Question", "Predicted_Answer", "Confidence", "Exact_Match"]],
|
191 |
+
gr.File(visible=True, value=file) if file else gr.File(visible=False)
|
192 |
)
|
193 |
|
194 |
+
evaluate_btn.click(
|
195 |
+
fn=handle_eval,
|
196 |
inputs=num_samples,
|
197 |
+
outputs=[results_summary, detailed_results, download_file],
|
198 |
+
show_progress=True
|
199 |
)
|
200 |
|
201 |
return demo
|
202 |
|
203 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
demo = create_gradio_interface()
|
205 |
demo.launch(
|
206 |
server_name="0.0.0.0",
|