Spaces:
Running
Running
import os | |
import json | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering | |
import torch | |
from collections import Counter | |
import string | |
import pandas as pd | |
from datetime import datetime | |
# Normalization functions | |
def normalize_answer(s): | |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) | |
def white_space_fix(text): return ' '.join(text.split()) | |
def remove_punc(text): | |
return ''.join(ch for ch in text if ch not in set(string.punctuation)) | |
def lower(text): return text.lower() | |
return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
# Metrics | |
def exact_match_score(pred, truth): | |
return int(normalize_answer(pred) == normalize_answer(truth)) | |
def f1_score_qa(pred, truth): | |
pred_tokens = normalize_answer(pred).split() | |
truth_tokens = normalize_answer(truth).split() | |
common = Counter(pred_tokens) & Counter(truth_tokens) | |
num_same = sum(common.values()) | |
if num_same == 0: return 0 | |
precision = num_same / len(pred_tokens) | |
recall = num_same / len(truth_tokens) | |
return (2 * precision * recall) / (precision + recall) | |
# Identical to extractor's QA confidence | |
def get_qa_confidence(model, tokenizer, question, context): | |
inputs = tokenizer( | |
question, context, | |
return_tensors="pt", | |
truncation=True, | |
max_length=512, | |
stride=128, | |
padding=True | |
) | |
if torch.cuda.is_available(): | |
inputs = {k:v.cuda() for k,v in inputs.items()} | |
model = model.cuda() | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
start_probs = torch.softmax(outputs.start_logits, dim=1) | |
end_probs = torch.softmax(outputs.end_logits, dim=1) | |
answer_start = torch.argmax(outputs.start_logits) | |
answer_end = torch.argmax(outputs.end_logits) + 1 | |
confidence = np.sqrt( | |
start_probs[0, answer_start].item() * | |
end_probs[0, answer_end-1].item() | |
) | |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end] | |
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True) | |
return answer.strip(), float(confidence) | |
def run_evaluation(num_samples=100): | |
# Load CUAD with remote code trust | |
dataset = load_dataset( | |
"theatticusproject/cuad-qa", | |
trust_remote_code=True, | |
token=os.getenv("HF_TOKEN", True) # True allows anonymous access | |
) | |
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"])))) | |
# Load model | |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
results = [] | |
for example in test_data: | |
context = example["context"] | |
question = example["question"] | |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else "" | |
pred, conf = get_qa_confidence(model, tokenizer, question, context) | |
results.append({ | |
"question": question[:100] + "..." if len(question) > 100 else question, | |
"prediction": pred, | |
"confidence": conf, | |
"exact_match": exact_match_score(pred, gt_answer), | |
"f1": f1_score_qa(pred, gt_answer), | |
"ground_truth": gt_answer | |
}) | |
# Generate report | |
df = pd.DataFrame(results) | |
report = f""" | |
Evaluation Results (n={len(df)}) | |
================= | |
Exact Match: {df['exact_match'].mean():.1%} | |
F1 Score: {df['f1'].mean():.1%} | |
Avg Confidence: {df['confidence'].mean():.1%} | |
High-Confidence Accuracy: { | |
df[df['confidence'] > 0.8]['exact_match'].mean():.1%} | |
""" | |
# Save | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
results_file = f"eval_results_{timestamp}.json" | |
with open(results_file, 'w') as f: | |
json.dump({ | |
"config": {"model": model_name, "dataset": "cuad-qa"}, | |
"metrics": { | |
"exact_match": float(df['exact_match'].mean()), | |
"f1": float(df['f1'].mean()), | |
"confidence": float(df['confidence'].mean()) | |
}, | |
"samples": results | |
}, f, indent=2) | |
return report, df, results_file | |
if __name__ == "__main__": | |
report, df, _ = run_evaluation(num_samples=50) | |
print(report) | |
print("\nSample predictions:") | |
print(df[["question", "confidence", "exact_match"]].head()) |