|
import gradio as gr
|
|
import pandas as pd
|
|
import ast
|
|
import torch
|
|
import numpy as np
|
|
from huggingface_hub import hf_hub_download
|
|
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
repo_id = "AventIQ-AI/all-MiniLM-L6-v2-book-recommendation-system"
|
|
filename = "book_embeddings.csv"
|
|
csv_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
|
|
|
|
|
df_embeddings = pd.read_csv(csv_path)
|
|
df_embeddings["embedding"] = df_embeddings["embedding"].apply(ast.literal_eval)
|
|
book_embeddings = torch.tensor(df_embeddings["embedding"].tolist())
|
|
|
|
|
|
def get_book_recommendations(query, top_k=5):
|
|
query_embedding = model.encode(query, convert_to_tensor=True)
|
|
|
|
similarities = util.pytorch_cos_sim(query_embedding, book_embeddings).squeeze(0)
|
|
top_k_values, top_k_indices = torch.topk(similarities, k=top_k)
|
|
|
|
recommended_titles = df_embeddings.iloc[top_k_indices.cpu().numpy()]["title"].tolist()
|
|
recommended_scores = top_k_values.cpu().numpy().tolist()
|
|
|
|
return [f"π {title} - Score: {score:.4f}" for title, score in zip(recommended_titles, recommended_scores)]
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
gr.Markdown("## π AI-Powered Book Recommendation System")
|
|
gr.Markdown("π **Find your next favorite book!** Enter a description or a genre, and the AI will suggest books.")
|
|
|
|
with gr.Row():
|
|
query_input = gr.Textbox(label="Enter Book Description / Genre", placeholder="E.g. A thrilling mystery novel...")
|
|
recommend_button = gr.Button("Get Recommendations π―")
|
|
|
|
output = gr.Textbox(label="Recommended Books", lines=5)
|
|
|
|
examples = [
|
|
["A horror novel with ghosts and dark nights"],
|
|
["A sci-fi adventure with aliens and space travel"],
|
|
["A romance story set in Paris"],
|
|
["A detective novel solving crimes in the city"],
|
|
["An inspiring self-help book for personal growth"]
|
|
]
|
|
|
|
gr.Examples(examples, inputs=[query_input])
|
|
|
|
recommend_button.click(fn=get_book_recommendations, inputs=[query_input], outputs=[output])
|
|
|
|
|
|
demo.launch()
|
|
|