Upload 2 files
Browse files- app.py +58 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import ast
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
|
9 |
+
# πΉ Load model
|
10 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
11 |
+
|
12 |
+
# πΉ Download book embeddings from Hugging Face Hub
|
13 |
+
repo_id = "AventIQ-AI/all-MiniLM-L6-v2-book-recommendation-system"
|
14 |
+
filename = "book_embeddings.csv"
|
15 |
+
csv_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
16 |
+
|
17 |
+
# πΉ Load embeddings
|
18 |
+
df_embeddings = pd.read_csv(csv_path)
|
19 |
+
df_embeddings["embedding"] = df_embeddings["embedding"].apply(ast.literal_eval)
|
20 |
+
book_embeddings = torch.tensor(df_embeddings["embedding"].tolist())
|
21 |
+
|
22 |
+
# πΉ Function to get book recommendations
|
23 |
+
def get_book_recommendations(query, top_k=5):
|
24 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
25 |
+
|
26 |
+
similarities = util.pytorch_cos_sim(query_embedding, book_embeddings).squeeze(0)
|
27 |
+
top_k_values, top_k_indices = torch.topk(similarities, k=top_k)
|
28 |
+
|
29 |
+
recommended_titles = df_embeddings.iloc[top_k_indices.cpu().numpy()]["title"].tolist()
|
30 |
+
recommended_scores = top_k_values.cpu().numpy().tolist()
|
31 |
+
|
32 |
+
return [f"π {title} - Score: {score:.4f}" for title, score in zip(recommended_titles, recommended_scores)]
|
33 |
+
|
34 |
+
# πΉ Define Gradio UI
|
35 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
36 |
+
gr.Markdown("## π AI-Powered Book Recommendation System")
|
37 |
+
gr.Markdown("π **Find your next favorite book!** Enter a description or a genre, and the AI will suggest books.")
|
38 |
+
|
39 |
+
with gr.Row():
|
40 |
+
query_input = gr.Textbox(label="Enter Book Description / Genre", placeholder="E.g. A thrilling mystery novel...")
|
41 |
+
recommend_button = gr.Button("Get Recommendations π―")
|
42 |
+
|
43 |
+
output = gr.Textbox(label="Recommended Books", lines=5)
|
44 |
+
|
45 |
+
examples = [
|
46 |
+
["A horror novel with ghosts and dark nights"],
|
47 |
+
["A sci-fi adventure with aliens and space travel"],
|
48 |
+
["A romance story set in Paris"],
|
49 |
+
["A detective novel solving crimes in the city"],
|
50 |
+
["An inspiring self-help book for personal growth"]
|
51 |
+
]
|
52 |
+
|
53 |
+
gr.Examples(examples, inputs=[query_input])
|
54 |
+
|
55 |
+
recommend_button.click(fn=get_book_recommendations, inputs=[query_input], outputs=[output])
|
56 |
+
|
57 |
+
# πΉ Launch the Gradio app
|
58 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
sentencepiece
|
5 |
+
torchvision
|
6 |
+
huggingface_hub
|
7 |
+
pillow
|
8 |
+
numpy
|