Spaces:
Running
Running
import gradio as gr | |
import torch | |
import soundfile as sf | |
import spaces | |
import os | |
import numpy as np | |
import re | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from speechbrain.pretrained import EncoderClassifier | |
from datasets import load_dataset | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def load_models_and_data(): | |
model_name = "microsoft/speecht5_tts" | |
processor = SpeechT5Processor.from_pretrained(model_name) | |
model = SpeechT5ForTextToSpeech.from_pretrained("Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts").to(device) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" | |
speaker_model = EncoderClassifier.from_hparams( | |
source=spk_model_name, | |
run_opts={"device": device}, | |
savedir=os.path.join("/tmp", spk_model_name), | |
) | |
# Load a sample from a dataset for default embedding | |
dataset = load_dataset("freds0/cml_tts_dataset_italian", split="train") | |
example = dataset[14] | |
return model, processor, vocoder, speaker_model, example | |
model, processor, vocoder, speaker_model, default_example = load_models_and_data() | |
def create_speaker_embedding(waveform): | |
with torch.no_grad(): | |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device)) | |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) | |
speaker_embeddings = speaker_embeddings.squeeze() | |
return speaker_embeddings | |
def prepare_default_embedding(example): | |
audio = example["audio"] | |
return create_speaker_embedding(audio["array"]) | |
default_embedding = prepare_default_embedding(default_example) | |
replacements = [ | |
('à', 'ah'), | |
('è', 'eh'), | |
('ì', 'ee'), | |
('í', 'ee'), | |
('ï', 'ee'), | |
('ò', 'aw'), | |
('ó', 'oh'), | |
('ù', 'oo'), | |
('ú', 'oo') | |
] | |
number_words = { | |
0: "zero", 1: "oo-noh", 2: "doo-eh", 3: "tre", 4: "quattro", 5: "chinque", 6: "sei", 7: "sette", 8: "otto", 9: "nove", | |
10: "decei", 11: "undici", 12: "dodici", 13: "tredici", 14: "quattordici", 15: "quindici", 16: "sedici", 17: "diciassette", | |
18: "diciotto", 19: "diciannove", 20: "venti", 30: "trenta", 40: "quaranta", 50: "cinquanta", 60: "sessanta", 70: "settanta", | |
80: "ottanta", 90: "novanta", 100: "cento", 1000: "mille" | |
} | |
def number_to_words(number): | |
if number < 20: | |
return number_words[number] | |
elif number < 100: | |
tens, unit = divmod(number, 10) | |
return number_words[tens * 10] + (" " + number_words[unit] if unit else "") | |
elif number < 1000: | |
hundreds, remainder = divmod(number, 100) | |
return (number_words[hundreds] + " centi" if hundreds > 1 else " centi") + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000: | |
thousands, remainder = divmod(number, 1000) | |
return (number_to_words(thousands) + " mille" if thousands > 1 else " mille") + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000000: | |
millions, remainder = divmod(number, 1000000) | |
return number_to_words(millions) + " millione" + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000000000: | |
billions, remainder = divmod(number, 1000000000) | |
return number_to_words(billions) + " milliardo" + (" " + number_to_words(remainder) if remainder else "") | |
else: | |
return str(number) | |
def replace_numbers_with_words(text): | |
def replace(match): | |
number = int(match.group()) | |
return number_to_words(number) | |
# Find the numbers and change with words. | |
result = re.sub(r'\b\d+\b', replace, text) | |
return result | |
def normalize_text(text): | |
# Convert to lowercase | |
text = text.lower() | |
# Replace numbers with words | |
text = replace_numbers_with_words(text) | |
# Apply character replacements | |
for old, new in replacements: | |
text = text.replace(old, new) | |
# Remove punctuation | |
text = re.sub(r'[^\w\s]', '', text) | |
return text | |
def text_to_speech(text, audio_file=None): | |
# Normalize the input text | |
normalized_text = normalize_text(text) | |
# Prepare the input for the model | |
inputs = processor(text=normalized_text, return_tensors="pt").to(device) | |
# Use the default speaker embedding | |
speaker_embeddings = default_embedding | |
# Generate speech | |
with torch.no_grad(): | |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder) | |
speech_np = speech.cpu().numpy() | |
return (24000, speech_np) | |
iface = gr.Interface( | |
fn=text_to_speech, | |
inputs=[ | |
gr.Textbox(label="Enter Italian text to convert to speech") | |
], | |
outputs=[ | |
gr.Audio(label="Generated Speech", type="numpy") | |
], | |
title="Italian SpeechT5 Text-to-Speech Demo", | |
description="Enter Italian text, and listen to the generated speech." | |
) | |
iface.launch(share=True) |