Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
import spaces
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
import re
|
| 9 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 10 |
+
from speechbrain.pretrained import EncoderClassifier
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
|
| 15 |
+
def load_models_and_data():
|
| 16 |
+
model_name = "microsoft/speecht5_tts"
|
| 17 |
+
processor = SpeechT5Processor.from_pretrained(model_name)
|
| 18 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts").to(device)
|
| 19 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 20 |
+
|
| 21 |
+
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
| 22 |
+
speaker_model = EncoderClassifier.from_hparams(
|
| 23 |
+
source=spk_model_name,
|
| 24 |
+
run_opts={"device": device},
|
| 25 |
+
savedir=os.path.join("/tmp", spk_model_name),
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Load a sample from a dataset for default embedding
|
| 29 |
+
dataset = load_dataset("freds0/cml_tts_dataset_italian", split="train")
|
| 30 |
+
example = dataset[14]
|
| 31 |
+
|
| 32 |
+
return model, processor, vocoder, speaker_model, example
|
| 33 |
+
|
| 34 |
+
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
| 35 |
+
|
| 36 |
+
def create_speaker_embedding(waveform):
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
| 39 |
+
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
| 40 |
+
speaker_embeddings = speaker_embeddings.squeeze()
|
| 41 |
+
return speaker_embeddings
|
| 42 |
+
|
| 43 |
+
def prepare_default_embedding(example):
|
| 44 |
+
audio = example["audio"]
|
| 45 |
+
return create_speaker_embedding(audio["array"])
|
| 46 |
+
|
| 47 |
+
default_embedding = prepare_default_embedding(default_example)
|
| 48 |
+
|
| 49 |
+
replacements = [
|
| 50 |
+
('à', 'ah'),
|
| 51 |
+
('è', 'eh'),
|
| 52 |
+
('ì', 'ee'),
|
| 53 |
+
('í', 'ee'),
|
| 54 |
+
('ï', 'ee'),
|
| 55 |
+
('ò', 'aw'),
|
| 56 |
+
('ó', 'oh'),
|
| 57 |
+
('ù', 'oo'),
|
| 58 |
+
('ú', 'oo')
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
number_words = {
|
| 62 |
+
0: "zero", 1: "oo-noh", 2: "doo-eh", 3: "tre", 4: "quattro", 5: "chinque", 6: "sei", 7: "sette", 8: "otto", 9: "nove",
|
| 63 |
+
10: "decei", 11: "undici", 12: "dodici", 13: "tredici", 14: "quattordici", 15: "quindici", 16: "sedici", 17: "diciassette",
|
| 64 |
+
18: "diciotto", 19: "diciannove", 20: "venti", 30: "trenta", 40: "quaranta", 50: "cinquanta", 60: "sessanta", 70: "settanta",
|
| 65 |
+
80: "ottanta", 90: "novanta", 100: "cento", 1000: "mille"
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
def number_to_words(number):
|
| 69 |
+
if number < 20:
|
| 70 |
+
return number_words[number]
|
| 71 |
+
elif number < 100:
|
| 72 |
+
tens, unit = divmod(number, 10)
|
| 73 |
+
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
| 74 |
+
elif number < 1000:
|
| 75 |
+
hundreds, remainder = divmod(number, 100)
|
| 76 |
+
return (number_words[hundreds] + " centi" if hundreds > 1 else " centi") + (" " + number_to_words(remainder) if remainder else "")
|
| 77 |
+
elif number < 1000000:
|
| 78 |
+
thousands, remainder = divmod(number, 1000)
|
| 79 |
+
return (number_to_words(thousands) + " mille" if thousands > 1 else " mille") + (" " + number_to_words(remainder) if remainder else "")
|
| 80 |
+
elif number < 1000000000:
|
| 81 |
+
millions, remainder = divmod(number, 1000000)
|
| 82 |
+
return number_to_words(millions) + " millione" + (" " + number_to_words(remainder) if remainder else "")
|
| 83 |
+
elif number < 1000000000000:
|
| 84 |
+
billions, remainder = divmod(number, 1000000000)
|
| 85 |
+
return number_to_words(billions) + " milliardo" + (" " + number_to_words(remainder) if remainder else "")
|
| 86 |
+
else:
|
| 87 |
+
return str(number)
|
| 88 |
+
|
| 89 |
+
def replace_numbers_with_words(text):
|
| 90 |
+
def replace(match):
|
| 91 |
+
number = int(match.group())
|
| 92 |
+
return number_to_words(number)
|
| 93 |
+
|
| 94 |
+
# Find the numbers and change with words.
|
| 95 |
+
result = re.sub(r'\b\d+\b', replace, text)
|
| 96 |
+
|
| 97 |
+
return result
|
| 98 |
+
|
| 99 |
+
def normalize_text(text):
|
| 100 |
+
# Convert to lowercase
|
| 101 |
+
text = text.lower()
|
| 102 |
+
|
| 103 |
+
# Replace numbers with words
|
| 104 |
+
text = replace_numbers_with_words(text)
|
| 105 |
+
|
| 106 |
+
# Apply character replacements
|
| 107 |
+
for old, new in replacements:
|
| 108 |
+
text = text.replace(old, new)
|
| 109 |
+
|
| 110 |
+
# Remove punctuation
|
| 111 |
+
text = re.sub(r'[^\w\s]', '', text)
|
| 112 |
+
|
| 113 |
+
return text
|
| 114 |
+
|
| 115 |
+
@spaces.GPU(duration=60)
|
| 116 |
+
def text_to_speech(text, audio_file=None):
|
| 117 |
+
# Normalize the input text
|
| 118 |
+
normalized_text = normalize_text(text)
|
| 119 |
+
|
| 120 |
+
# Prepare the input for the model
|
| 121 |
+
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
| 122 |
+
|
| 123 |
+
# Use the default speaker embedding
|
| 124 |
+
speaker_embeddings = default_embedding
|
| 125 |
+
|
| 126 |
+
# Generate speech
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
|
| 129 |
+
|
| 130 |
+
speech_np = speech.cpu().numpy()
|
| 131 |
+
|
| 132 |
+
return (24000, speech_np)
|
| 133 |
+
|
| 134 |
+
iface = gr.Interface(
|
| 135 |
+
fn=text_to_speech,
|
| 136 |
+
inputs=[
|
| 137 |
+
gr.Textbox(label="Enter Italian text to convert to speech")
|
| 138 |
+
],
|
| 139 |
+
outputs=[
|
| 140 |
+
gr.Audio(label="Generated Speech", type="numpy")
|
| 141 |
+
],
|
| 142 |
+
title="Italian SpeechT5 Text-to-Speech Demo",
|
| 143 |
+
description="Enter Italian text, and listen to the generated speech."
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
iface.launch(share=True)
|