Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,54 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import soundfile as sf
|
4 |
-
import spaces
|
5 |
import os
|
6 |
-
import numpy as np
|
7 |
-
import re
|
8 |
-
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
9 |
-
from speechbrain.pretrained import EncoderClassifier
|
10 |
-
from datasets import load_dataset
|
11 |
|
12 |
-
# Load
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
iface = gr.Interface(
|
19 |
fn=text_to_speech,
|
20 |
-
inputs=
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
gr.Audio(label="Generated Speech", type="numpy")
|
25 |
-
],
|
26 |
-
title="English SpeechT5 Text-to-Speech Demo",
|
27 |
-
description="Enter English text, and listen to the generated speech."
|
28 |
)
|
29 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
3 |
+
from transformers import AutoProcessor, AutoModelForTextToSpectrogram
|
4 |
+
from datasets import load_dataset
|
5 |
import torch
|
6 |
import soundfile as sf
|
|
|
7 |
import os
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Load models and processors
|
10 |
+
processor = AutoProcessor.from_pretrained("speecht5_finetuned_Aumkesh_tr")
|
11 |
+
model = AutoModelForTextToSpectrogram.from_pretrained("speecht5_finetuned_Aumkesh_tr")
|
12 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
13 |
|
14 |
+
# Load xvector containing speaker's voice characteristics from a dataset
|
15 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
16 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
17 |
|
18 |
+
# Quantize the models
|
19 |
+
def quantize_model(model):
|
20 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
21 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
22 |
+
)
|
23 |
+
return quantized_model
|
24 |
+
|
25 |
+
# Only quantize the vocoder, as the main model might not be compatible
|
26 |
+
vocoder = quantize_model(vocoder)
|
27 |
+
|
28 |
+
# Move models to GPU if available
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
model = model.to(device)
|
31 |
+
vocoder = vocoder.to(device)
|
32 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
33 |
+
|
34 |
+
# Use inference mode for faster computation
|
35 |
+
@torch.inference_mode()
|
36 |
+
def text_to_speech(text):
|
37 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
38 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
39 |
+
speech = speech.cpu() # Move back to CPU for saving
|
40 |
+
output_path = "output.wav"
|
41 |
+
sf.write(output_path, speech.numpy(), samplerate=16000)
|
42 |
+
return output_path
|
43 |
+
|
44 |
+
# Create Gradio interface
|
45 |
iface = gr.Interface(
|
46 |
fn=text_to_speech,
|
47 |
+
inputs=gr.Textbox(label="Enter the text"),
|
48 |
+
outputs=gr.Audio(label="Generated Speech"),
|
49 |
+
title="Text-to-Speech Converter",
|
50 |
+
description="Convert text to speech using the SpeechT5 model."
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
+
|
53 |
+
# Launch the app
|
54 |
+
iface.launch()
|