Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,131 +9,12 @@ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5Hif
|
|
9 |
from speechbrain.pretrained import EncoderClassifier
|
10 |
from datasets import load_dataset
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
processor = SpeechT5Processor.from_pretrained(model_name)
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("speecht5_finetuned_Aumkesh_tr").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
21 |
-
speaker_model = EncoderClassifier.from_hparams(
|
22 |
-
source=spk_model_name,
|
23 |
-
run_opts={"device": device},
|
24 |
-
savedir=os.path.join("/tmp", spk_model_name),
|
25 |
-
)
|
26 |
-
|
27 |
-
# Load a sample from a dataset for default embedding
|
28 |
-
dataset = load_dataset("Yassmen/TTS_English_Technical_data", split="train")
|
29 |
-
example = dataset[304]
|
30 |
-
|
31 |
-
return model, processor, vocoder, speaker_model, example
|
32 |
|
33 |
-
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
34 |
-
|
35 |
-
def create_speaker_embedding(waveform):
|
36 |
-
with torch.no_grad():
|
37 |
-
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
38 |
-
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
39 |
-
speaker_embeddings = speaker_embeddings.squeeze()
|
40 |
-
return speaker_embeddings
|
41 |
-
|
42 |
-
def prepare_default_embedding(example):
|
43 |
-
audio = example["audio"]
|
44 |
-
return create_speaker_embedding(audio["array"])
|
45 |
-
|
46 |
-
default_embedding = prepare_default_embedding(default_example)
|
47 |
-
|
48 |
-
replacements = [
|
49 |
-
("@", "at the rate"),
|
50 |
-
("$", "dollar")
|
51 |
-
]
|
52 |
-
|
53 |
-
number_words = {
|
54 |
-
0: "zero", 1: "one", 2: "two", 3: "tree", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine",
|
55 |
-
10: "ten", 11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen", 15: "fifteen", 16: "sixteen", 17: "seventeen",
|
56 |
-
18: "eighteen", 19: "nineteen", 20: "tweenty", 30: "thirty", 40: "forty", 50: "fifty", 60: "sixty", 70: "seventy",
|
57 |
-
80: "eighty", 90: "ninty", 100: "hundred", 1000: "thousand"
|
58 |
-
}
|
59 |
-
|
60 |
-
def number_to_words(number):
|
61 |
-
if number < 20:
|
62 |
-
return number_words[number]
|
63 |
-
elif number < 100:
|
64 |
-
tens, unit = divmod(number, 10)
|
65 |
-
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
66 |
-
elif number < 1000:
|
67 |
-
hundreds, remainder = divmod(number, 100)
|
68 |
-
return (number_words[hundreds] + " hundred" if hundreds > 1 else " hundred") + (" " + number_to_words(remainder) if remainder else "")
|
69 |
-
elif number < 1000000:
|
70 |
-
thousands, remainder = divmod(number, 1000)
|
71 |
-
return (number_to_words(thousands) + " thousand" if thousands > 1 else " thousand") + (" " + number_to_words(remainder) if remainder else "")
|
72 |
-
elif number < 1000000000:
|
73 |
-
millions, remainder = divmod(number, 1000000)
|
74 |
-
return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
|
75 |
-
elif number < 1000000000000:
|
76 |
-
billions, remainder = divmod(number, 1000000000)
|
77 |
-
return number_to_words(billions) + " billion" + (" " + number_to_words(remainder) if remainder else "")
|
78 |
-
else:
|
79 |
-
return str(number)
|
80 |
-
|
81 |
-
def replace_numbers_with_words(text):
|
82 |
-
|
83 |
-
def replace(match):
|
84 |
-
number = int(match.group())
|
85 |
-
return number_to_words(number)
|
86 |
-
|
87 |
-
# Find the numbers and change with words.
|
88 |
-
result = re.sub(r'\b\d+\b', replace, text)
|
89 |
-
|
90 |
-
return result
|
91 |
-
|
92 |
-
def replace_numbers_with_words(text):
|
93 |
-
def replace(match):
|
94 |
-
number = int(match.group())
|
95 |
-
return number_to_words(number)
|
96 |
-
|
97 |
-
# Find the numbers and change with words.
|
98 |
-
result = re.sub(r'\b\d+\b', replace, text)
|
99 |
-
|
100 |
-
return result
|
101 |
-
|
102 |
-
def normalize_text(text):
|
103 |
-
# Convert to lowercase
|
104 |
-
text = text.lower()
|
105 |
-
|
106 |
-
# Replace numbers with words
|
107 |
-
text = replace_numbers_with_words(text)
|
108 |
-
|
109 |
-
# Apply character replacements
|
110 |
-
for old, new in replacements:
|
111 |
-
text = text.replace(old, new)
|
112 |
-
|
113 |
-
# Remove punctuation
|
114 |
-
text = re.sub(r'[^\w\s]', '', text)
|
115 |
-
|
116 |
-
return text
|
117 |
-
|
118 |
-
@spaces.GPU(duration=60)
|
119 |
-
def text_to_speech(text, audio_file=None):
|
120 |
-
# Normalize the input text
|
121 |
-
normalized_text = normalize_text(text)
|
122 |
-
|
123 |
-
# Prepare the input for the model
|
124 |
-
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
125 |
-
|
126 |
-
# Use the default speaker embedding
|
127 |
-
speaker_embeddings = default_embedding
|
128 |
-
|
129 |
-
# Generate speech
|
130 |
-
with torch.no_grad():
|
131 |
-
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
|
132 |
-
|
133 |
-
speech_np = speech.cpu().numpy()
|
134 |
-
|
135 |
-
return (16000, speech_np)
|
136 |
-
|
137 |
iface = gr.Interface(
|
138 |
fn=text_to_speech,
|
139 |
inputs=[
|
|
|
9 |
from speechbrain.pretrained import EncoderClassifier
|
10 |
from datasets import load_dataset
|
11 |
|
12 |
+
# Load model directly
|
13 |
+
from transformers import AutoProcessor, AutoModelForTextToSpectrogram
|
14 |
|
15 |
+
processor = AutoProcessor.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_tr")
|
16 |
+
model = AutoModelForTextToSpectrogram.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_tr")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
iface = gr.Interface(
|
19 |
fn=text_to_speech,
|
20 |
inputs=[
|