File size: 6,595 Bytes
ddaa9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import streamlit as st
import torch
import torch.nn as nn
from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from huggingface_hub import login
import os
import time

# Model Architecture
class TinyTransformer(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.pos_encoding = nn.Parameter(torch.zeros(1, 512, embed_dim))
        encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=ff_dim, batch_first=True)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        self.fc = nn.Linear(embed_dim, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
        x = self.transformer(x)
        x = x.mean(dim=1)  # Global average pooling
        x = self.fc(x)
        return self.sigmoid(x)

class TinyTransformerConfig(PretrainedConfig):
    model_type = "tiny_transformer"

    def __init__(
        self,
        vocab_size=30522,
        embed_dim=64,
        num_heads=2,
        ff_dim=128,
        num_layers=4,
        max_position_embeddings=512,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.ff_dim = ff_dim
        self.num_layers = num_layers
        self.max_position_embeddings = max_position_embeddings

class TinyTransformerForSequenceClassification(PreTrainedModel):
    config_class = TinyTransformerConfig

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = 1
        self.transformer = TinyTransformer(
            config.vocab_size,
            config.embed_dim,
            config.num_heads,
            config.ff_dim,
            config.num_layers
        )

    def forward(self, input_ids, attention_mask=None):
        outputs = self.transformer(input_ids)
        return {"logits": outputs}

# Load models and tokenizers
@st.cache_resource
def load_models_and_tokenizers(hf_token):
    login(token=hf_token)
    device = torch.device("cpu")  # forcing CPU as overhead of inference on GPU slows down the inference
    
    models = {}
    tokenizers = {}
    
    # Load Tiny-toxic-detector
    config = TinyTransformerConfig.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", use_auth_token=hf_token)
    models["Tiny-toxic-detector"] = TinyTransformerForSequenceClassification.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", config=config, use_auth_token=hf_token).to(device)
    tokenizers["Tiny-toxic-detector"] = AutoTokenizer.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", use_auth_token=hf_token)
    
    # Load other models
    model_configs = [
        ("unitary/toxic-bert", AutoModelForSequenceClassification, "unitary/toxic-bert"),
        ("s-nlp/roberta_toxicity_classifier", AutoModelForSequenceClassification, "s-nlp/roberta_toxicity_classifier"),
        ("martin-ha/toxic-comment-model", AutoModelForSequenceClassification, "martin-ha/toxic-comment-model"),
        ("lmsys/toxicchat-t5-large-v1.0", AutoModelForSeq2SeqLM, "t5-large")
    ]
    
    for model_name, model_class, tokenizer_name in model_configs:
        models[model_name] = model_class.from_pretrained(model_name, use_auth_token=hf_token).to(device)
        tokenizers[model_name] = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=hf_token)
    
    return models, tokenizers, device

# Prediction function
def predict_toxicity(text, model, tokenizer, device, model_name):
    start_time = time.time()
    
    if model_name == "lmsys/toxicchat-t5-large-v1.0":
        prefix = "ToxicChat: "
        inputs = tokenizer.encode(prefix + text, return_tensors="pt").to(device)
        
        with torch.no_grad():
            outputs = model.generate(inputs, max_new_tokens=5)
        
        prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).strip().lower()
        prediction = "Toxic" if prediction == "positive" else "Not Toxic"
    else:
        inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128, padding="max_length").to(device)
        
        if "token_type_ids" in inputs:
            del inputs["token_type_ids"]

        with torch.no_grad():
            outputs = model(**inputs)
        
        if model_name == "Tiny-toxic-detector":
            logits = outputs["logits"].squeeze()
            prediction = "Toxic" if logits > 0.5 else "Not Toxic"
        else:
            logits = outputs.logits.squeeze()
            prediction = "Toxic" if logits[1] > logits[0] else "Not Toxic"

    end_time = time.time()
    inference_time = end_time - start_time
    
    return prediction, inference_time

def main():
    st.set_page_config(page_title="Multi-Model Toxicity Detector", layout="wide")
    st.title("Multi-Model Toxicity Detector")

    # Load models
    hf_token = os.getenv('AT')
    models, tokenizers, device = load_models_and_tokenizers(hf_token)

    # Reorder the models dictionary so that "Tiny-toxic-detector" is last
    model_names = sorted(models.keys(), key=lambda x: x == "Tiny-toxic-detector")

    # User input
    text = st.text_area("Enter text to classify:", height=150)

    if st.button("Classify"):
        if text:
            progress_bar = st.progress(0)
            results = []

            for i, model_name in enumerate(model_names):
                with st.spinner(f"Classifying with {model_name}..."):
                    prediction, inference_time = predict_toxicity(text, models[model_name], tokenizers[model_name], device, model_name)
                    results.append((model_name, prediction, inference_time))
                progress_bar.progress((i + 1) / len(model_names))

            st.success("Classification complete!")
            progress_bar.empty()

            # Display results in a grid
            col1, col2, col3 = st.columns(3)
            for i, (model_name, prediction, inference_time) in enumerate(results):
                with [col1, col2, col3][i % 3]:
                    st.subheader(model_name)
                    st.write(f"Prediction: {prediction}")
                    st.write(f"Inference Time: {inference_time:.4f}s")
                    st.write("---")
        else:
            st.warning("Please enter some text to classify.")

if __name__ == "__main__":
    main()