Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
5 |
+
from huggingface_hub import login
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
|
9 |
+
# Model Architecture
|
10 |
+
class TinyTransformer(nn.Module):
|
11 |
+
def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers):
|
12 |
+
super().__init__()
|
13 |
+
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
14 |
+
self.pos_encoding = nn.Parameter(torch.zeros(1, 512, embed_dim))
|
15 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=ff_dim, batch_first=True)
|
16 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
17 |
+
self.fc = nn.Linear(embed_dim, 1)
|
18 |
+
self.sigmoid = nn.Sigmoid()
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
|
22 |
+
x = self.transformer(x)
|
23 |
+
x = x.mean(dim=1) # Global average pooling
|
24 |
+
x = self.fc(x)
|
25 |
+
return self.sigmoid(x)
|
26 |
+
|
27 |
+
class TinyTransformerConfig(PretrainedConfig):
|
28 |
+
model_type = "tiny_transformer"
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
vocab_size=30522,
|
33 |
+
embed_dim=64,
|
34 |
+
num_heads=2,
|
35 |
+
ff_dim=128,
|
36 |
+
num_layers=4,
|
37 |
+
max_position_embeddings=512,
|
38 |
+
**kwargs
|
39 |
+
):
|
40 |
+
super().__init__(**kwargs)
|
41 |
+
self.vocab_size = vocab_size
|
42 |
+
self.embed_dim = embed_dim
|
43 |
+
self.num_heads = num_heads
|
44 |
+
self.ff_dim = ff_dim
|
45 |
+
self.num_layers = num_layers
|
46 |
+
self.max_position_embeddings = max_position_embeddings
|
47 |
+
|
48 |
+
class TinyTransformerForSequenceClassification(PreTrainedModel):
|
49 |
+
config_class = TinyTransformerConfig
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__(config)
|
53 |
+
self.num_labels = 1
|
54 |
+
self.transformer = TinyTransformer(
|
55 |
+
config.vocab_size,
|
56 |
+
config.embed_dim,
|
57 |
+
config.num_heads,
|
58 |
+
config.ff_dim,
|
59 |
+
config.num_layers
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, input_ids, attention_mask=None):
|
63 |
+
outputs = self.transformer(input_ids)
|
64 |
+
return {"logits": outputs}
|
65 |
+
|
66 |
+
# Load models and tokenizers
|
67 |
+
@st.cache_resource
|
68 |
+
def load_models_and_tokenizers(hf_token):
|
69 |
+
login(token=hf_token)
|
70 |
+
device = torch.device("cpu") # forcing CPU as overhead of inference on GPU slows down the inference
|
71 |
+
|
72 |
+
models = {}
|
73 |
+
tokenizers = {}
|
74 |
+
|
75 |
+
# Load Tiny-toxic-detector
|
76 |
+
config = TinyTransformerConfig.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", use_auth_token=hf_token)
|
77 |
+
models["Tiny-toxic-detector"] = TinyTransformerForSequenceClassification.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", config=config, use_auth_token=hf_token).to(device)
|
78 |
+
tokenizers["Tiny-toxic-detector"] = AutoTokenizer.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", use_auth_token=hf_token)
|
79 |
+
|
80 |
+
# Load other models
|
81 |
+
model_configs = [
|
82 |
+
("unitary/toxic-bert", AutoModelForSequenceClassification, "unitary/toxic-bert"),
|
83 |
+
("s-nlp/roberta_toxicity_classifier", AutoModelForSequenceClassification, "s-nlp/roberta_toxicity_classifier"),
|
84 |
+
("martin-ha/toxic-comment-model", AutoModelForSequenceClassification, "martin-ha/toxic-comment-model"),
|
85 |
+
("lmsys/toxicchat-t5-large-v1.0", AutoModelForSeq2SeqLM, "t5-large")
|
86 |
+
]
|
87 |
+
|
88 |
+
for model_name, model_class, tokenizer_name in model_configs:
|
89 |
+
models[model_name] = model_class.from_pretrained(model_name, use_auth_token=hf_token).to(device)
|
90 |
+
tokenizers[model_name] = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=hf_token)
|
91 |
+
|
92 |
+
return models, tokenizers, device
|
93 |
+
|
94 |
+
# Prediction function
|
95 |
+
def predict_toxicity(text, model, tokenizer, device, model_name):
|
96 |
+
start_time = time.time()
|
97 |
+
|
98 |
+
if model_name == "lmsys/toxicchat-t5-large-v1.0":
|
99 |
+
prefix = "ToxicChat: "
|
100 |
+
inputs = tokenizer.encode(prefix + text, return_tensors="pt").to(device)
|
101 |
+
|
102 |
+
with torch.no_grad():
|
103 |
+
outputs = model.generate(inputs, max_new_tokens=5)
|
104 |
+
|
105 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).strip().lower()
|
106 |
+
prediction = "Toxic" if prediction == "positive" else "Not Toxic"
|
107 |
+
else:
|
108 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128, padding="max_length").to(device)
|
109 |
+
|
110 |
+
if "token_type_ids" in inputs:
|
111 |
+
del inputs["token_type_ids"]
|
112 |
+
|
113 |
+
with torch.no_grad():
|
114 |
+
outputs = model(**inputs)
|
115 |
+
|
116 |
+
if model_name == "Tiny-toxic-detector":
|
117 |
+
logits = outputs["logits"].squeeze()
|
118 |
+
prediction = "Toxic" if logits > 0.5 else "Not Toxic"
|
119 |
+
else:
|
120 |
+
logits = outputs.logits.squeeze()
|
121 |
+
prediction = "Toxic" if logits[1] > logits[0] else "Not Toxic"
|
122 |
+
|
123 |
+
end_time = time.time()
|
124 |
+
inference_time = end_time - start_time
|
125 |
+
|
126 |
+
return prediction, inference_time
|
127 |
+
|
128 |
+
def main():
|
129 |
+
st.set_page_config(page_title="Multi-Model Toxicity Detector", layout="wide")
|
130 |
+
st.title("Multi-Model Toxicity Detector")
|
131 |
+
|
132 |
+
# Load models
|
133 |
+
hf_token = os.getenv('AT')
|
134 |
+
models, tokenizers, device = load_models_and_tokenizers(hf_token)
|
135 |
+
|
136 |
+
# Reorder the models dictionary so that "Tiny-toxic-detector" is last
|
137 |
+
model_names = sorted(models.keys(), key=lambda x: x == "Tiny-toxic-detector")
|
138 |
+
|
139 |
+
# User input
|
140 |
+
text = st.text_area("Enter text to classify:", height=150)
|
141 |
+
|
142 |
+
if st.button("Classify"):
|
143 |
+
if text:
|
144 |
+
progress_bar = st.progress(0)
|
145 |
+
results = []
|
146 |
+
|
147 |
+
for i, model_name in enumerate(model_names):
|
148 |
+
with st.spinner(f"Classifying with {model_name}..."):
|
149 |
+
prediction, inference_time = predict_toxicity(text, models[model_name], tokenizers[model_name], device, model_name)
|
150 |
+
results.append((model_name, prediction, inference_time))
|
151 |
+
progress_bar.progress((i + 1) / len(model_names))
|
152 |
+
|
153 |
+
st.success("Classification complete!")
|
154 |
+
progress_bar.empty()
|
155 |
+
|
156 |
+
# Display results in a grid
|
157 |
+
col1, col2, col3 = st.columns(3)
|
158 |
+
for i, (model_name, prediction, inference_time) in enumerate(results):
|
159 |
+
with [col1, col2, col3][i % 3]:
|
160 |
+
st.subheader(model_name)
|
161 |
+
st.write(f"Prediction: {prediction}")
|
162 |
+
st.write(f"Inference Time: {inference_time:.4f}s")
|
163 |
+
st.write("---")
|
164 |
+
else:
|
165 |
+
st.warning("Please enter some text to classify.")
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
main()
|