File size: 15,635 Bytes
de2fcfc 64cf743 de2fcfc b9b08c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# -*- coding: utf-8 -*-
"""controlnet_depth_canny_segmentation.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1oeKagV0PyeA1ezzMP4h4KnRRHaklw7L1
"""
import os
import torch
from PIL import Image
import numpy as np
import cv2
import random
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
from transformers import AutoTokenizer, CLIPTextModel, CLIPFeatureExtractor
from transformers import DPTForDepthEstimation, DPTImageProcessor
# Imports for Segmentation
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor
stable_diffusion_base = "runwayml/stable-diffusion-v1-5"
# Path to your fine-tuned ControlNet Depth model
finetune_controlnet_depth_path = "controlnet"
# Pre-trained ControlNet models for Canny and Segmentation
# These are standard models from the lllyasviel collection, optimized for these tasks.
controlnet_canny_pretrained_path = "lllyasviel/sd-controlnet-canny"
controlnet_seg_pretrained_path = "lllyasviel/sd-controlnet-seg"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
# Global pipeline and pre-processor models
pipeline = None
depth_estimator_model = None
depth_estimator_processor = None
segmentation_model_preprocessor = None # Renamed to avoid conflict with ControlNet model
segmentation_processor_preprocessor = None # Renamed to avoid conflict with ControlNet model
# Global ControlNet models
controlnet_depth_model = None
controlnet_canny_model = None
controlnet_seg_model = None
def load_depth_estimator():
"""Loads the MiDaS depth estimation model."""
global depth_estimator_model, depth_estimator_processor
if depth_estimator_model is None:
print("Loading LiheYoung/depth-anything-large-hf depth estimation model...")
model_name = "LiheYoung/depth-anything-large-hf"
depth_estimator_model = DPTForDepthEstimation.from_pretrained(model_name)
depth_estimator_processor = DPTImageProcessor.from_pretrained(model_name)
depth_estimator_model.to(DEVICE)
depth_estimator_model.eval()
print("MiDaS depth estimation model loaded.")
return depth_estimator_model, depth_estimator_processor
def load_segmentation_preprocessor_model():
"""Loads the Mask2Former segmentation pre-processor model."""
global segmentation_model_preprocessor, segmentation_processor_preprocessor
if segmentation_model_preprocessor is None:
print("Loading Mask2Former segmentation pre-processor model...")
model_name = "facebook/mask2former-swin-large-ade-semantic"
segmentation_processor_preprocessor = Mask2FormerImageProcessor.from_pretrained(model_name)
segmentation_model_preprocessor = Mask2FormerForUniversalSegmentation.from_pretrained(model_name)
segmentation_model_preprocessor.to(DEVICE)
segmentation_model_preprocessor.eval()
print("Mask2Former segmentation pre-processor model loaded.")
return segmentation_model_preprocessor, segmentation_processor_preprocessor
def load_diffusion_pipeline_and_controlnets():
"""
Loads the base Stable Diffusion pipeline components and all ControlNet models.
"""
global pipeline, controlnet_depth_model, controlnet_canny_model, controlnet_seg_model
if pipeline is None:
print("Loading base Stable Diffusion pipeline components...")
try:
# Load individual components of the base Stable Diffusion pipeline
vae = AutoencoderKL.from_pretrained(stable_diffusion_base, subfolder="vae", torch_dtype=DTYPE)
tokenizer = AutoTokenizer.from_pretrained(stable_diffusion_base, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(stable_diffusion_base, subfolder="text_encoder", torch_dtype=DTYPE)
unet = UNet2DConditionModel.from_pretrained(stable_diffusion_base, subfolder="unet", torch_dtype=DTYPE)
scheduler = DDPMScheduler.from_pretrained(stable_diffusion_base, subfolder="scheduler")
feature_extractor = CLIPFeatureExtractor.from_pretrained(stable_diffusion_base, subfolder="feature_extractor")
# Load ControlNet models
print("Loading ControlNet models (Depth, Canny, Segmentation)...")
if not os.path.exists(finetune_controlnet_depth_path):
raise FileNotFoundError(f"Fine-tuned ControlNet Depth model not found at: {finetune_controlnet_depth_path}")
controlnet_depth_model = ControlNetModel.from_pretrained(finetune_controlnet_depth_path, torch_dtype=DTYPE)
controlnet_canny_model = ControlNetModel.from_pretrained(controlnet_canny_pretrained_path, torch_dtype=DTYPE)
controlnet_seg_model = ControlNetModel.from_pretrained(controlnet_seg_pretrained_path, torch_dtype=DTYPE)
print("All ControlNet models loaded.")
# Create the StableDiffusionControlNetPipeline with a list of ControlNets
pipeline = StableDiffusionControlNetPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=[controlnet_depth_model, controlnet_canny_model, controlnet_seg_model], # Pass list of ControlNets
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
image_encoder=None,
requires_safety_checker=False,
)
pipeline.to(DEVICE)
if torch.cuda.is_available() and hasattr(pipeline, "enable_xformers_memory_efficient_attention"):
try:
pipeline.enable_xformers_memory_efficient_attention()
print("xformers memory efficient attention enabled.")
except Exception as e:
print(f"Could not enable xformers: {e}")
# Load all necessary pre-processor models at startup
load_depth_estimator()
load_segmentation_preprocessor_model()
print("Diffusion pipeline and all pre-processor models loaded successfully.")
except Exception as e:
print(f"Error loading pipeline or ControlNets: {e}")
pipeline = None
raise RuntimeError(f"Failed to load diffusion pipeline or ControlNets: {e}")
return pipeline
def estimate_depth(pil_image: Image.Image) -> Image.Image:
"""Estimates depth map from a PIL image."""
global depth_estimator_model, depth_estimator_processor
if depth_estimator_model is None or depth_estimator_processor is None:
try:
load_depth_estimator()
except RuntimeError as e:
raise RuntimeError(f"Depth estimator not loaded: {e}")
inputs = depth_estimator_processor(images=pil_image, return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.no_grad():
outputs = depth_estimator_model(**inputs)
predicted_depth = outputs.predicted_depth
depth_numpy = predicted_depth.squeeze().cpu().numpy()
min_depth = depth_numpy.min()
max_depth = depth_numpy.max()
normalized_depth = (depth_numpy - min_depth) / (max_depth - min_depth)
inverted_normalized_depth = 1 - normalized_depth
depth_image_array = (inverted_normalized_depth * 255).astype(np.uint8)
depth_pil_image = Image.fromarray(depth_image_array).convert("RGB")
return depth_pil_image
def estimate_canny(pil_image: Image.Image) -> Image.Image:
"""Estimates Canny edges from a PIL image."""
img = np.array(pil_image)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
low_threshold = 100
high_threshold = 200
canny = cv2.Canny(blurred, low_threshold, high_threshold)
canny_pil = Image.fromarray(canny).convert("RGB")
return canny_pil
def estimate_segmentation(pil_image: Image.Image) -> Image.Image:
"""Estimates segmentation map from a PIL image."""
global segmentation_model_preprocessor, segmentation_processor_preprocessor
if segmentation_model_preprocessor is None or segmentation_processor_preprocessor is None:
try:
load_segmentation_preprocessor_model()
except RuntimeError as e:
raise RuntimeError(f"Segmentation model not loaded: {e}")
inputs = segmentation_processor_preprocessor(images=pil_image, return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.no_grad():
outputs = segmentation_model_preprocessor(**inputs)
# The Mask2FormerForUniversalSegmentation model returns 'sem_seg' for semantic segmentation
# I will use the post_process_semantic_segmentation function to get the processed mask
target_size = pil_image.size[::-1] # (height, width)
segmentation_maps = segmentation_processor_preprocessor.post_process_semantic_segmentation(
outputs, target_sizes=[target_size]
)
# Access the processed segmentation map from the list
predicted_mask = segmentation_maps[0].squeeze(0).cpu().numpy()
unique_classes = np.unique(predicted_mask)
color_map = {}
for class_id in unique_classes:
if class_id == 0:
color_map[class_id] = (0, 0, 0) # Black for background
else:
# Generate consistent colors for classes across runs, but still random-ish
# Convert class_id to standard integer for random.seed()
random.seed(int(class_id))
color_map[class_id] = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255))
colored_segmentation_array = np.zeros((*predicted_mask.shape, 3), dtype=np.uint8)
for y in range(predicted_mask.shape[0]):
for x in range(predicted_mask.shape[1]):
colored_segmentation_array[y, x] = color_map[predicted_mask[y, x]]
segmentation_pil_image = Image.fromarray(colored_segmentation_array).convert("RGB")
return segmentation_pil_image
def generate_image_with_all_controls_simultaneous(
input_image_raw: Image.Image,
prompt: str,
negative_prompt: str = "",
num_inference_steps: int = 25,
guidance_scale: float = 8.0,
strength: float = 0.8,
seed: int = None,
resolution: int = 512
) -> tuple[Image.Image, Image.Image, Image.Image, Image.Image]: # Returns generated image + 3 control maps
global pipeline
if pipeline is None:
try:
load_diffusion_pipeline_and_controlnets()
except RuntimeError as e:
# Raise a Gradio Error instead of returning it
raise gr.Error(f"Model not loaded: {e}")
# 1. Generate all control maps
print("Generating all control maps (Depth, Canny, Segmentation)...")
try:
depth_map_pil = estimate_depth(input_image_raw)
canny_map_pil = estimate_canny(input_image_raw)
segmentation_map_pil = estimate_segmentation(input_image_raw)
print("All control maps generated.")
except Exception as e:
# Raise a Gradio Error instead of returning it
raise gr.Error(f"Error during control map generation: {e}")
print(f"Generating image for prompt: '{prompt}' (Negative: '{negative_prompt}', Strength: {strength})")
# Resize all generated control maps to the desired resolution
# IMPORTANT: The order here must match the order of ControlNet models in the pipeline
# (depth_model, canny_model, seg_model)
control_images_for_pipeline = [
depth_map_pil.resize((resolution, resolution), Image.LANCZOS).convert("RGB"),
canny_map_pil.resize((resolution, resolution), Image.LANCZOS).convert("RGB"),
segmentation_map_pil.resize((resolution, resolution), Image.LANCZOS).convert("RGB")
]
generator = None
if seed is None:
seed = random.randint(0, 100000)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
with torch.no_grad():
generated_images = pipeline(
prompt,
negative_prompt=negative_prompt,
image=control_images_for_pipeline, # Pass the list of control images
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
strength=strength,
generator=generator,
).images
print(f"Image generation complete (seed: {seed}).")
# Return the generated image and all three control maps for visualization
return generated_images[0], depth_map_pil, canny_map_pil, segmentation_map_pil
# Gradio Interface Setup
with gr.Blocks() as iface:
gr.Markdown(
"""
# Stable Diffusion ControlNet Multi-Control (Simultaneous) Demo
Upload an input image, and the app will generate its **Depth Map**, **Canny Edges**, and **Segmentation Map**.
These three control maps will then be used **simultaneously** with your text prompt to generate a new image.
This provides highly detailed structural guidance.
**⚠️ WARNING: This setup requires significant GPU memory. It may crash on smaller GPUs (e.g., Colab T4).**
"""
)
with gr.Row():
with gr.Column():
input_image_raw = gr.Image(type="pil", label="Input Image")
prompt = gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design, photorealistic, 4k")
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed, ugly, disfigured, watermark, text, signature, error, missing limbs, extra limbs, mutated, out of frame, cropped, noisy, grainy, jpeg artifacts, cartoon, painting, illustration, sketch, drawing, 3d render", placeholder="Enter negative prompt to guide generation away from these features")
num_inference_steps = gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Inference Steps")
guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=8.0, step=0.5, label="Guidance Scale")
strength = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.01, label="Strength (0.0-1.0)")
seed = gr.Number(label="Seed (optional, leave blank for random)", value=None)
resolution = gr.Number(label="Resolution", value=512, interactive=False)
submit_btn = gr.Button("Generate Images")
with gr.Column():
generated_image_output = gr.Image(type="pil", label="Generated Image (Multi-Control)")
with gr.Row():
depth_map_output = gr.Image(type="pil", label="Generated Depth Map")
canny_map_output = gr.Image(type="pil", label="Generated Canny Edges")
segmentation_map_output = gr.Image(type="pil", label="Generated Segmentation Map")
# Define the action for the submit button
submit_btn.click(
fn=generate_image_with_all_controls_simultaneous,
inputs=[
input_image_raw,
prompt,
negative_prompt,
num_inference_steps,
guidance_scale,
strength,
seed,
resolution
],
outputs=[
generated_image_output,
depth_map_output,
canny_map_output,
segmentation_map_output
]
)
# Load the pipeline and pre-processor models when the Gradio app starts
load_diffusion_pipeline_and_controlnets()
if __name__ == "__main__":
iface.launch(debug=True, share=True) |