AsmaAILab commited on
Commit
de2fcfc
·
verified ·
1 Parent(s): aef6328

Upload controlnet_depth_canny_segmentation.py

Browse files
controlnet_depth_canny_segmentation.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """controlnet_depth_canny_segmentation.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1oeKagV0PyeA1ezzMP4h4KnRRHaklw7L1
8
+ """
9
+
10
+ import os
11
+ import torch
12
+ from PIL import Image
13
+ import numpy as np
14
+ import cv2
15
+ import random
16
+ import gradio as gr
17
+
18
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
19
+ from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
20
+ from transformers import AutoTokenizer, CLIPTextModel, CLIPFeatureExtractor
21
+ from transformers import DPTForDepthEstimation, DPTImageProcessor
22
+ # Imports for Segmentation
23
+ from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor
24
+
25
+ stable_diffusion_base = "runwayml/stable-diffusion-v1-5"
26
+
27
+ # Path to your fine-tuned ControlNet Depth model
28
+ finetune_controlnet_depth_path = "/content/drive/MyDrive/Output_ControlNet_Finetune"
29
+
30
+ # Pre-trained ControlNet models for Canny and Segmentation
31
+ # These are standard models from the lllyasviel collection, optimized for these tasks.
32
+ controlnet_canny_pretrained_path = "lllyasviel/sd-controlnet-canny"
33
+ controlnet_seg_pretrained_path = "lllyasviel/sd-controlnet-seg"
34
+
35
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+ DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
37
+
38
+ # Global pipeline and pre-processor models
39
+ pipeline = None
40
+ depth_estimator_model = None
41
+ depth_estimator_processor = None
42
+ segmentation_model_preprocessor = None # Renamed to avoid conflict with ControlNet model
43
+ segmentation_processor_preprocessor = None # Renamed to avoid conflict with ControlNet model
44
+
45
+ # Global ControlNet models
46
+ controlnet_depth_model = None
47
+ controlnet_canny_model = None
48
+ controlnet_seg_model = None
49
+
50
+ def load_depth_estimator():
51
+ """Loads the MiDaS depth estimation model."""
52
+ global depth_estimator_model, depth_estimator_processor
53
+
54
+ if depth_estimator_model is None:
55
+
56
+ print("Loading LiheYoung/depth-anything-large-hf depth estimation model...")
57
+ model_name = "LiheYoung/depth-anything-large-hf"
58
+
59
+ depth_estimator_model = DPTForDepthEstimation.from_pretrained(model_name)
60
+ depth_estimator_processor = DPTImageProcessor.from_pretrained(model_name)
61
+ depth_estimator_model.to(DEVICE)
62
+
63
+ depth_estimator_model.eval()
64
+ print("MiDaS depth estimation model loaded.")
65
+
66
+
67
+ return depth_estimator_model, depth_estimator_processor
68
+
69
+ def load_segmentation_preprocessor_model():
70
+ """Loads the Mask2Former segmentation pre-processor model."""
71
+ global segmentation_model_preprocessor, segmentation_processor_preprocessor
72
+
73
+ if segmentation_model_preprocessor is None:
74
+ print("Loading Mask2Former segmentation pre-processor model...")
75
+ model_name = "facebook/mask2former-swin-large-ade-semantic"
76
+
77
+ segmentation_processor_preprocessor = Mask2FormerImageProcessor.from_pretrained(model_name)
78
+ segmentation_model_preprocessor = Mask2FormerForUniversalSegmentation.from_pretrained(model_name)
79
+ segmentation_model_preprocessor.to(DEVICE)
80
+
81
+ segmentation_model_preprocessor.eval()
82
+ print("Mask2Former segmentation pre-processor model loaded.")
83
+ return segmentation_model_preprocessor, segmentation_processor_preprocessor
84
+
85
+ def load_diffusion_pipeline_and_controlnets():
86
+ """
87
+ Loads the base Stable Diffusion pipeline components and all ControlNet models.
88
+ """
89
+ global pipeline, controlnet_depth_model, controlnet_canny_model, controlnet_seg_model
90
+
91
+ if pipeline is None:
92
+ print("Loading base Stable Diffusion pipeline components...")
93
+
94
+ try:
95
+ # Load individual components of the base Stable Diffusion pipeline
96
+ vae = AutoencoderKL.from_pretrained(stable_diffusion_base, subfolder="vae", torch_dtype=DTYPE)
97
+ tokenizer = AutoTokenizer.from_pretrained(stable_diffusion_base, subfolder="tokenizer")
98
+ text_encoder = CLIPTextModel.from_pretrained(stable_diffusion_base, subfolder="text_encoder", torch_dtype=DTYPE)
99
+ unet = UNet2DConditionModel.from_pretrained(stable_diffusion_base, subfolder="unet", torch_dtype=DTYPE)
100
+ scheduler = DDPMScheduler.from_pretrained(stable_diffusion_base, subfolder="scheduler")
101
+ feature_extractor = CLIPFeatureExtractor.from_pretrained(stable_diffusion_base, subfolder="feature_extractor")
102
+
103
+ # Load ControlNet models
104
+ print("Loading ControlNet models (Depth, Canny, Segmentation)...")
105
+ if not os.path.exists(finetune_controlnet_depth_path):
106
+ raise FileNotFoundError(f"Fine-tuned ControlNet Depth model not found at: {finetune_controlnet_depth_path}")
107
+
108
+ controlnet_depth_model = ControlNetModel.from_pretrained(finetune_controlnet_depth_path, torch_dtype=DTYPE)
109
+ controlnet_canny_model = ControlNetModel.from_pretrained(controlnet_canny_pretrained_path, torch_dtype=DTYPE)
110
+ controlnet_seg_model = ControlNetModel.from_pretrained(controlnet_seg_pretrained_path, torch_dtype=DTYPE)
111
+ print("All ControlNet models loaded.")
112
+
113
+ # Create the StableDiffusionControlNetPipeline with a list of ControlNets
114
+ pipeline = StableDiffusionControlNetPipeline(
115
+ vae=vae,
116
+ text_encoder=text_encoder,
117
+ tokenizer=tokenizer,
118
+ unet=unet,
119
+ controlnet=[controlnet_depth_model, controlnet_canny_model, controlnet_seg_model], # Pass list of ControlNets
120
+ scheduler=scheduler,
121
+ safety_checker=None,
122
+ feature_extractor=feature_extractor,
123
+ image_encoder=None,
124
+ requires_safety_checker=False,
125
+ )
126
+
127
+ pipeline.to(DEVICE)
128
+ if torch.cuda.is_available() and hasattr(pipeline, "enable_xformers_memory_efficient_attention"):
129
+ try:
130
+ pipeline.enable_xformers_memory_efficient_attention()
131
+ print("xformers memory efficient attention enabled.")
132
+ except Exception as e:
133
+ print(f"Could not enable xformers: {e}")
134
+
135
+ # Load all necessary pre-processor models at startup
136
+ load_depth_estimator()
137
+ load_segmentation_preprocessor_model()
138
+ print("Diffusion pipeline and all pre-processor models loaded successfully.")
139
+
140
+ except Exception as e:
141
+ print(f"Error loading pipeline or ControlNets: {e}")
142
+ pipeline = None
143
+ raise RuntimeError(f"Failed to load diffusion pipeline or ControlNets: {e}")
144
+ return pipeline
145
+
146
+ def estimate_depth(pil_image: Image.Image) -> Image.Image:
147
+ """Estimates depth map from a PIL image."""
148
+ global depth_estimator_model, depth_estimator_processor
149
+
150
+ if depth_estimator_model is None or depth_estimator_processor is None:
151
+ try:
152
+ load_depth_estimator()
153
+ except RuntimeError as e:
154
+ raise RuntimeError(f"Depth estimator not loaded: {e}")
155
+
156
+ inputs = depth_estimator_processor(images=pil_image, return_tensors="pt")
157
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
158
+
159
+ with torch.no_grad():
160
+ outputs = depth_estimator_model(**inputs)
161
+ predicted_depth = outputs.predicted_depth
162
+
163
+ depth_numpy = predicted_depth.squeeze().cpu().numpy()
164
+
165
+ min_depth = depth_numpy.min()
166
+ max_depth = depth_numpy.max()
167
+ normalized_depth = (depth_numpy - min_depth) / (max_depth - min_depth)
168
+
169
+ inverted_normalized_depth = 1 - normalized_depth
170
+
171
+ depth_image_array = (inverted_normalized_depth * 255).astype(np.uint8)
172
+ depth_pil_image = Image.fromarray(depth_image_array).convert("RGB")
173
+ return depth_pil_image
174
+
175
+ def estimate_canny(pil_image: Image.Image) -> Image.Image:
176
+ """Estimates Canny edges from a PIL image."""
177
+ img = np.array(pil_image)
178
+ gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
179
+ blurred = cv2.GaussianBlur(gray, (5, 5), 0)
180
+ low_threshold = 100
181
+ high_threshold = 200
182
+ canny = cv2.Canny(blurred, low_threshold, high_threshold)
183
+ canny_pil = Image.fromarray(canny).convert("RGB")
184
+ return canny_pil
185
+
186
+ def estimate_segmentation(pil_image: Image.Image) -> Image.Image:
187
+ """Estimates segmentation map from a PIL image."""
188
+ global segmentation_model_preprocessor, segmentation_processor_preprocessor
189
+ if segmentation_model_preprocessor is None or segmentation_processor_preprocessor is None:
190
+ try:
191
+ load_segmentation_preprocessor_model()
192
+ except RuntimeError as e:
193
+ raise RuntimeError(f"Segmentation model not loaded: {e}")
194
+
195
+ inputs = segmentation_processor_preprocessor(images=pil_image, return_tensors="pt")
196
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
197
+
198
+ with torch.no_grad():
199
+ outputs = segmentation_model_preprocessor(**inputs)
200
+
201
+ # The Mask2FormerForUniversalSegmentation model returns 'sem_seg' for semantic segmentation
202
+ # I will use the post_process_semantic_segmentation function to get the processed mask
203
+ target_size = pil_image.size[::-1] # (height, width)
204
+ segmentation_maps = segmentation_processor_preprocessor.post_process_semantic_segmentation(
205
+ outputs, target_sizes=[target_size]
206
+ )
207
+ # Access the processed segmentation map from the list
208
+ predicted_mask = segmentation_maps[0].squeeze(0).cpu().numpy()
209
+
210
+
211
+ unique_classes = np.unique(predicted_mask)
212
+ color_map = {}
213
+ for class_id in unique_classes:
214
+ if class_id == 0:
215
+ color_map[class_id] = (0, 0, 0) # Black for background
216
+ else:
217
+ # Generate consistent colors for classes across runs, but still random-ish
218
+ # Convert class_id to standard integer for random.seed()
219
+ random.seed(int(class_id))
220
+ color_map[class_id] = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255))
221
+
222
+ colored_segmentation_array = np.zeros((*predicted_mask.shape, 3), dtype=np.uint8)
223
+ for y in range(predicted_mask.shape[0]):
224
+ for x in range(predicted_mask.shape[1]):
225
+ colored_segmentation_array[y, x] = color_map[predicted_mask[y, x]]
226
+
227
+ segmentation_pil_image = Image.fromarray(colored_segmentation_array).convert("RGB")
228
+ return segmentation_pil_image
229
+
230
+ def generate_image_with_all_controls_simultaneous(
231
+ input_image_raw: Image.Image,
232
+ prompt: str,
233
+ negative_prompt: str = "",
234
+ num_inference_steps: int = 25,
235
+ guidance_scale: float = 8.0,
236
+ strength: float = 0.8,
237
+ seed: int = None,
238
+ resolution: int = 512
239
+ ) -> tuple[Image.Image, Image.Image, Image.Image, Image.Image]: # Returns generated image + 3 control maps
240
+
241
+ global pipeline
242
+ if pipeline is None:
243
+ try:
244
+ load_diffusion_pipeline_and_controlnets()
245
+ except RuntimeError as e:
246
+ # Raise a Gradio Error instead of returning it
247
+ raise gr.Error(f"Model not loaded: {e}")
248
+
249
+ # 1. Generate all control maps
250
+ print("Generating all control maps (Depth, Canny, Segmentation)...")
251
+ try:
252
+ depth_map_pil = estimate_depth(input_image_raw)
253
+ canny_map_pil = estimate_canny(input_image_raw)
254
+ segmentation_map_pil = estimate_segmentation(input_image_raw)
255
+ print("All control maps generated.")
256
+ except Exception as e:
257
+ # Raise a Gradio Error instead of returning it
258
+ raise gr.Error(f"Error during control map generation: {e}")
259
+
260
+ print(f"Generating image for prompt: '{prompt}' (Negative: '{negative_prompt}', Strength: {strength})")
261
+
262
+ # Resize all generated control maps to the desired resolution
263
+ # IMPORTANT: The order here must match the order of ControlNet models in the pipeline
264
+ # (depth_model, canny_model, seg_model)
265
+ control_images_for_pipeline = [
266
+ depth_map_pil.resize((resolution, resolution), Image.LANCZOS).convert("RGB"),
267
+ canny_map_pil.resize((resolution, resolution), Image.LANCZOS).convert("RGB"),
268
+ segmentation_map_pil.resize((resolution, resolution), Image.LANCZOS).convert("RGB")
269
+ ]
270
+
271
+ generator = None
272
+ if seed is None:
273
+ seed = random.randint(0, 100000)
274
+ generator = torch.Generator(device=DEVICE).manual_seed(seed)
275
+
276
+ with torch.no_grad():
277
+ generated_images = pipeline(
278
+ prompt,
279
+ negative_prompt=negative_prompt,
280
+ image=control_images_for_pipeline, # Pass the list of control images
281
+ num_inference_steps=num_inference_steps,
282
+ guidance_scale=guidance_scale,
283
+ strength=strength,
284
+ generator=generator,
285
+ ).images
286
+
287
+ print(f"Image generation complete (seed: {seed}).")
288
+ # Return the generated image and all three control maps for visualization
289
+ return generated_images[0], depth_map_pil, canny_map_pil, segmentation_map_pil
290
+
291
+ # Gradio Interface Setup
292
+ with gr.Blocks() as iface:
293
+ gr.Markdown(
294
+ """
295
+ # Stable Diffusion ControlNet Multi-Control (Simultaneous) Demo
296
+ Upload an input image, and the app will generate its **Depth Map**, **Canny Edges**, and **Segmentation Map**.
297
+ These three control maps will then be used **simultaneously** with your text prompt to generate a new image.
298
+ This provides highly detailed structural guidance.
299
+
300
+ **⚠️ WARNING: This setup requires significant GPU memory. It may crash on smaller GPUs (e.g., Colab T4).**
301
+ """
302
+ )
303
+
304
+ with gr.Row():
305
+ with gr.Column():
306
+ input_image_raw = gr.Image(type="pil", label="Input Image")
307
+ prompt = gr.Textbox(label="Prompt", value="a high-quality photo of a modern interior design, photorealistic, 4k")
308
+ negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed, ugly, disfigured, watermark, text, signature, error, missing limbs, extra limbs, mutated, out of frame, cropped, noisy, grainy, jpeg artifacts, cartoon, painting, illustration, sketch, drawing, 3d render", placeholder="Enter negative prompt to guide generation away from these features")
309
+ num_inference_steps = gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Inference Steps")
310
+ guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=8.0, step=0.5, label="Guidance Scale")
311
+ strength = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.01, label="Strength (0.0-1.0)")
312
+ seed = gr.Number(label="Seed (optional, leave blank for random)", value=None)
313
+ resolution = gr.Number(label="Resolution", value=512, interactive=False)
314
+ submit_btn = gr.Button("Generate Images")
315
+
316
+ with gr.Column():
317
+ generated_image_output = gr.Image(type="pil", label="Generated Image (Multi-Control)")
318
+ with gr.Row():
319
+ depth_map_output = gr.Image(type="pil", label="Generated Depth Map")
320
+ canny_map_output = gr.Image(type="pil", label="Generated Canny Edges")
321
+ segmentation_map_output = gr.Image(type="pil", label="Generated Segmentation Map")
322
+
323
+ # Define the action for the submit button
324
+ submit_btn.click(
325
+ fn=generate_image_with_all_controls_simultaneous,
326
+ inputs=[
327
+ input_image_raw,
328
+ prompt,
329
+ negative_prompt,
330
+ num_inference_steps,
331
+ guidance_scale,
332
+ strength,
333
+ seed,
334
+ resolution
335
+ ],
336
+ outputs=[
337
+ generated_image_output,
338
+ depth_map_output,
339
+ canny_map_output,
340
+ segmentation_map_output
341
+ ]
342
+ )
343
+
344
+ # Load the pipeline and pre-processor models when the Gradio app starts
345
+ load_diffusion_pipeline_and_controlnets()
346
+
347
+ if __name__ == "__main__":
348
+ iface.launch(debug=True, share=True)
349
+
350
+ from google.colab import drive
351
+ drive.mount('/content/drive')