File size: 10,633 Bytes
67b1c6c fb2bc8c 67b1c6c fb2bc8c 67b1c6c fb2bc8c 67b1c6c fb2bc8c 67b1c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from flask import Flask, request, jsonify
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.data import HeteroData
import numpy as np
import pandas as pd
import networkx as nx
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, classification_report, roc_curve
from sklearn.model_selection import train_test_split
from pathlib import Path
from datetime import datetime
from loguru import logger
from huggingface_hub import hf_hub_download
import json
from preprocessing_test import Preprocessor
from src.model import *
from main import start_pipelines
app = Flask(__name__)
# Define default values for each column
default_values = {
'review_id': 'KU_O5udG6zpxOg-VcAEodg',
'user_id': 'mh_-eMZ6K5RLWhZyISBhwA',
'business_id': 'XQfwVwDr-v0ZS3_CbbE5Xw',
'review_stars': 0,
'review_useful': 0,
'review_funny': 0,
'review_cool': 0,
'review_text': 'It was a moderate experience',
'review_date': 1531001351000,
'business_name': 'Coffe at LA',
'address': '1460 LA',
'city': 'LA',
'state': 'CA',
'postal_code': '00000',
'latitude': 0.0,
'longitude': 0.0,
'business_stars': 0.0,
'business_review_count': 0,
'is_open': 0,
'attributes': '{}',
'categories': 'Restaurants',
'hours': '{"Monday": "7:0-20:0", "Tuesday": "7:0-20:0", "Wednesday": "7:0-20:0", "Thursday": "7:0-20:0", "Friday": "7:0-21:0", "Saturday": "7:0-21:0", "Sunday": "7:0-21:0"}',
'user_name': 'default_user',
'user_review_count': 0,
'yelping_since': '2023-01-01 00:00:00',
'user_useful': 0,
'user_funny': 0,
'user_cool': 0,
'elite': '2024,2025',
'friends': '',
'fans': 0,
'average_stars': 0.0,
'compliment_hot': 0,
'compliment_more': 0,
'compliment_profile': 0,
'compliment_cute': 0,
'compliment_list': 0,
'compliment_note': 0,
'compliment_plain': 0,
'compliment_cool': 0,
'compliment_funny': 0,
'compliment_writer': 0,
'compliment_photos': 0,
'checkin_date': '2023-01-01 00:00:00',
'tip_compliment_count': 0.0,
'tip_count': 0.0
}
# Expected types for validation
expected_types = {
'review_id': str,
'user_id': str,
'business_id': str,
'review_stars': int,
'review_useful': int,
'review_funny': int,
'review_cool': int,
'review_text': str,
'review_date': int,
'business_name': str,
'address': str,
'city': str,
'state': str,
'postal_code': str,
'latitude': float,
'longitude': float,
'business_stars': float,
'business_review_count': int,
'is_open': int,
'attributes': dict, # Assuming string representation of dict
'categories': str,
'hours': dict, # Assuming string representation of dict
'user_name': str,
'user_review_count': int,
'yelping_since': str,
'user_useful': int,
'user_funny': int,
'user_cool': int,
'elite': str,
'friends': str,
'fans': int,
'average_stars': float,
'compliment_hot': int,
'compliment_more': int,
'compliment_profile': int,
'compliment_cute': int,
'compliment_list': int,
'compliment_note': int,
'compliment_plain': int,
'compliment_cool': int,
'compliment_funny': int,
'compliment_writer': int,
'compliment_photos': int,
'checkin_date': str,
'tip_compliment_count': float,
'tip_count': float
}
@app.route('/predict', methods=['POST'])
def predict():
try:
# Check if request contains JSON data
if not request.json:
return jsonify({'error': 'Request must contain JSON data'}), 400
data = request.json
# Extract train, test, and train_size with defaults
train = data.get('train', False)
test = data.get('test', False)
train_size = float(data.get('train_size', 0.1))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Handle training mode
if train in (True, 'true', 'True'):
start_pipelines(train_size=train_size)
logger.info("PIPELINES FINISHED SUCCESSFULLY")
return jsonify({
'message': 'Training pipelines executed successfully',
'train_size': train_size
}), 200
# Handle testing/inference mode
elif test in (True, 'test', 'True'):
REPO_ID = "Askhedi/graphformermodel"
MODEL_FILENAME = "model_GraphformerModel_latest.pth"
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME)
# Load model
model = HeteroGraphormer(hidden_dim=64, output_dim=1, edge_dim=4).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Process input data from JSON
row = {}
warnings = []
for col, expected_type in expected_types.items():
value = data.get(col, default_values[col])
try:
if value == "" or value is None:
row[col] = default_values[col]
elif col in ['attributes', 'hours']:
# Expect a valid JSON string that parses to a dict
if isinstance(value, str):
parsed = json.loads(value)
if not isinstance(parsed, dict):
raise ValueError
row[col] = value # Keep as string for Preprocessor
else:
raise ValueError
else:
row[col] = expected_type(value)
except (ValueError, TypeError, json.JSONDecodeError):
row[col] = default_values[col]
warnings.append(f"Invalid input for '{col}' (expected {expected_type.__name__}), using default value: {default_values[col]}")
# Convert dictionaries to strings before passing to DataFrame
for col in ['attributes', 'hours']:
if isinstance(row[col], dict):
row[col] = json.dumps(row[col])
# Create DataFrame from input
input_df = pd.DataFrame([row])
# Preprocess using Preprocessor
preprocessor = Preprocessor(input_df)
processed_df = preprocessor.run_pipeline()
logger.info(f"PREPROCESSING COMPLETED VALUES ARE {processed_df}")
# Build standalone graph from processed data
num_users = 1
num_businesses = 1
num_rows = 1
graph = HeteroData()
features = torch.tensor(processed_df.drop(columns=['user_id', 'review_id', 'business_id']).values, dtype=torch.float, device=device)
time_since_user = torch.tensor(processed_df['time_since_last_review_user'].values, dtype=torch.float, device=device)
time_since_business = torch.tensor(processed_df['time_since_last_review_business'].values, dtype=torch.float, device=device)
user_indices = torch.tensor([0], dtype=torch.long, device=device)
business_indices = torch.tensor([0], dtype=torch.long, device=device)
review_indices = torch.tensor([0], dtype=torch.long, device=device)
user_feats = torch.zeros(num_users, 14, device=device)
business_feats = torch.zeros(num_businesses, 8, device=device)
review_feats = torch.zeros(num_rows, 16, device=device)
user_feats[0] = features[0, :14]
business_feats[0] = features[0, 14:22]
review_feats[0] = features[0, 22:38]
graph['user'].x = user_feats
graph['business'].x = business_feats
graph['review'].x = review_feats
graph['user', 'writes', 'review'].edge_index = torch.stack([user_indices, review_indices], dim=0)
graph['review', 'about', 'business'].edge_index = torch.stack([review_indices, business_indices], dim=0)
# Compute encodings
G = nx.DiGraph()
node_type_map = {0: 'user', 1: 'business', 2: 'review'}
G.add_nodes_from([0, 1, 2])
G.add_edge(0, 2) # user -> review
G.add_edge(2, 1) # review -> business
num_nodes = 3
spatial_encoding = torch.full((num_nodes, num_nodes), float('inf'), device=device)
for i in range(num_nodes):
for j in range(num_nodes):
if i == j:
spatial_encoding[i, j] = 0
elif nx.has_path(G, i, j):
spatial_encoding[i, j] = nx.shortest_path_length(G, i, j)
centrality_encoding = torch.tensor([G.degree(i) for i in range(num_nodes)], dtype=torch.float, device=device).view(-1, 1)
edge_features_dict = {}
user_writes_edge = graph['user', 'writes', 'review'].edge_index
review_about_edge = graph['review', 'about', 'business'].edge_index
edge_features_dict[('user', 'writes', 'review')] = create_temporal_edge_features(
time_since_user[user_writes_edge[0]], time_since_user[user_writes_edge[1]],
user_indices[user_writes_edge[0]], user_indices[user_writes_edge[0]]
)
edge_features_dict[('review', 'about', 'business')] = create_temporal_edge_features(
time_since_business[review_about_edge[0]], time_since_business[review_about_edge[1]],
torch.zeros_like(review_about_edge[0]), torch.zeros_like(review_about_edge[0])
)
time_since_dict = {
'user': torch.tensor([time_since_user[0]], dtype=torch.float, device=device)
}
# Inference
with torch.no_grad():
out = model(graph, spatial_encoding, centrality_encoding, node_type_map, time_since_dict, edge_features_dict)
pred_label = 1 if out.squeeze().item() > 0.5 else 0
prob = out.squeeze().item()
# Combine warnings and result
result = {
'warnings': warnings,
'prediction': 'Fake' if pred_label == 1 else 'Not Fake',
'probability': float(prob)
}
return jsonify(result), 200
else:
return jsonify({
'error': 'Either "train" or "test" must be set to true'
}), 400
except Exception as e:
return jsonify({'error': str(e)}), 500
|