OVH
commited on
Commit
·
fb2bc8c
1
Parent(s):
64ba780
Some files appropriated
Browse files- .ipynb_checkpoints/app-checkpoint.py +4 -6
- app.py +4 -4
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -128,20 +128,20 @@ def predict():
|
|
128 |
|
129 |
data = request.json
|
130 |
|
131 |
-
# Extract train, test, and
|
132 |
train = data.get('train', False)
|
133 |
test = data.get('test', False)
|
134 |
-
|
135 |
|
136 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
137 |
|
138 |
# Handle training mode
|
139 |
if train in (True, 'true', 'True'):
|
140 |
-
start_pipelines(
|
141 |
logger.info("PIPELINES FINISHED SUCCESSFULLY")
|
142 |
return jsonify({
|
143 |
'message': 'Training pipelines executed successfully',
|
144 |
-
'
|
145 |
}), 200
|
146 |
|
147 |
# Handle testing/inference mode
|
@@ -277,5 +277,3 @@ def predict():
|
|
277 |
except Exception as e:
|
278 |
return jsonify({'error': str(e)}), 500
|
279 |
|
280 |
-
if __name__ == '__main__':
|
281 |
-
app.run(debug=True, host='0.0.0.0', port=5000)
|
|
|
128 |
|
129 |
data = request.json
|
130 |
|
131 |
+
# Extract train, test, and train_size with defaults
|
132 |
train = data.get('train', False)
|
133 |
test = data.get('test', False)
|
134 |
+
train_size = float(data.get('train_size', 0.1))
|
135 |
|
136 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
137 |
|
138 |
# Handle training mode
|
139 |
if train in (True, 'true', 'True'):
|
140 |
+
start_pipelines(train_size=train_size)
|
141 |
logger.info("PIPELINES FINISHED SUCCESSFULLY")
|
142 |
return jsonify({
|
143 |
'message': 'Training pipelines executed successfully',
|
144 |
+
'train_size': train_size
|
145 |
}), 200
|
146 |
|
147 |
# Handle testing/inference mode
|
|
|
277 |
except Exception as e:
|
278 |
return jsonify({'error': str(e)}), 500
|
279 |
|
|
|
|
app.py
CHANGED
@@ -128,20 +128,20 @@ def predict():
|
|
128 |
|
129 |
data = request.json
|
130 |
|
131 |
-
# Extract train, test, and
|
132 |
train = data.get('train', False)
|
133 |
test = data.get('test', False)
|
134 |
-
|
135 |
|
136 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
137 |
|
138 |
# Handle training mode
|
139 |
if train in (True, 'true', 'True'):
|
140 |
-
start_pipelines(
|
141 |
logger.info("PIPELINES FINISHED SUCCESSFULLY")
|
142 |
return jsonify({
|
143 |
'message': 'Training pipelines executed successfully',
|
144 |
-
'
|
145 |
}), 200
|
146 |
|
147 |
# Handle testing/inference mode
|
|
|
128 |
|
129 |
data = request.json
|
130 |
|
131 |
+
# Extract train, test, and train_size with defaults
|
132 |
train = data.get('train', False)
|
133 |
test = data.get('test', False)
|
134 |
+
train_size = float(data.get('train_size', 0.1))
|
135 |
|
136 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
137 |
|
138 |
# Handle training mode
|
139 |
if train in (True, 'true', 'True'):
|
140 |
+
start_pipelines(train_size=train_size)
|
141 |
logger.info("PIPELINES FINISHED SUCCESSFULLY")
|
142 |
return jsonify({
|
143 |
'message': 'Training pipelines executed successfully',
|
144 |
+
'train_size': train_size
|
145 |
}), 200
|
146 |
|
147 |
# Handle testing/inference mode
|