File size: 6,751 Bytes
46d803c
 
96cec35
ddeb472
46d803c
96cec35
 
 
 
 
0d32e06
 
 
 
03ca516
 
 
96cec35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d803c
 
03ca516
30d77e9
03ca516
0d32e06
03ca516
 
 
 
 
 
 
 
 
 
 
0d32e06
03ca516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d32e06
03ca516
 
 
 
 
 
 
 
 
 
0d32e06
03ca516
 
0d32e06
46d803c
96cec35
03ca516
 
 
 
 
96cec35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d803c
96cec35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
# from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re

from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
from deepseek_vl2.utils.io import load_pil_images


from transformers import AutoModelForCausalLM



models = {
    "OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"),
}

processors = {
    "OS-Copilot/OS-Atlas-Base-7B": AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
}


def image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str


def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
    draw = ImageDraw.Draw(image)
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
    return image


def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
    x_scale = original_width / scaled_width
    y_scale = original_height / scaled_height
    rescaled_boxes = []
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        rescaled_box = [
            xmin * x_scale,
            ymin * y_scale,
            xmax * x_scale,
            ymax * y_scale
        ]
        rescaled_boxes.append(rescaled_box)
    return rescaled_boxes


def deepseek():
    print("helloe!!!!")
    # specify the path to the model
    model_path = "deepseek-ai/deepseek-vl2-tiny"
    vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
    tokenizer = vl_chat_processor.tokenizer

    vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()

    ## single image conversation example
    conversation = [
        {
            "role": "<|User|>",
            "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>.",
            "images": ["./images/visual_grounding_1.jpeg"],
        },
        {"role": "<|Assistant|>", "content": ""},
    ]

    # load images and prepare for inputs
    pil_images = load_pil_images(conversation)
    prepare_inputs = vl_chat_processor(
        conversations=conversation,
        images=pil_images,
        force_batchify=True,
        system_prompt=""
    ).to(vl_gpt.device)

    # run image encoder to get the image embeddings
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

    # run the model to get the response
    outputs = vl_gpt.language.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=prepare_inputs.attention_mask,
        pad_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=512,
        do_sample=False,
        use_cache=True
    )

    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False)
    print(f"{prepare_inputs['sft_format'][0]}", answer)


@spaces.GPU
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):

    deepseek()
    

def run_example_old(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
    model = models[model_id].eval()
    processor = processors[model_id]
    prompt = f"In this UI screenshot, what is the position of the element corresponding to the command \"{text_input}\" (with bbox)?"
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
    )
    print(output_text)
    text = output_text[0]

    object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
    box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"

    object_ref = re.search(object_ref_pattern, text).group(1)
    box_content = re.search(box_pattern, text).group(1)

    boxes = [tuple(map(int, pair.strip("()").split(','))) for pair in box_content.split("),(")]
    boxes = [[boxes[0][0], boxes[0][1], boxes[1][0], boxes[1][1]]]

    scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height)
    return object_ref, scaled_boxes, draw_bounding_boxes(image, scaled_boxes)

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""
with gr.Blocks(css=css) as demo:
    gr.Markdown(
    """
    # Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents
    """)
    with gr.Row():
        with gr.Column():
            input_img = gr.Image(label="Input Image", type="pil")
            model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="OS-Copilot/OS-Atlas-Base-7B")
            text_input = gr.Textbox(label="User Prompt")
            submit_btn = gr.Button(value="Submit")
        with gr.Column():
            model_output_text = gr.Textbox(label="Model Output Text")
            model_output_box = gr.Textbox(label="Model Output Box")
            annotated_image = gr.Image(label="Annotated Image")

    gr.Examples(
        examples=[
            ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"],
            ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"],
        ],
        inputs=[input_img, text_input],
        outputs=[model_output_text, model_output_box, annotated_image],
        fn=run_example,
        cache_examples=True,
        label="Try examples"
    )

    submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text, model_output_box, annotated_image])

demo.launch(debug=True)