Spaces:
Runtime error
Runtime error
Commit
Β·
03ca516
1
Parent(s):
63f8ed1
Test deepseek
Browse files- app.py +75 -0
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -8,6 +8,11 @@ from PIL import Image, ImageDraw
|
|
| 8 |
from io import BytesIO
|
| 9 |
import re
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
models = {
|
| 13 |
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"),
|
|
@@ -49,8 +54,78 @@ def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scal
|
|
| 49 |
return rescaled_boxes
|
| 50 |
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
@spaces.GPU
|
| 53 |
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
model = models[model_id].eval()
|
| 55 |
processor = processors[model_id]
|
| 56 |
prompt = f"In this UI screenshot, what is the position of the element corresponding to the command \"{text_input}\" (with bbox)?"
|
|
|
|
| 8 |
from io import BytesIO
|
| 9 |
import re
|
| 10 |
|
| 11 |
+
from deepseek_vl.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
|
| 12 |
+
from deepseek_vl.utils.io import load_pil_images
|
| 13 |
+
from transformers import AutoModelForCausalLM
|
| 14 |
+
|
| 15 |
+
|
| 16 |
|
| 17 |
models = {
|
| 18 |
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained("OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"),
|
|
|
|
| 54 |
return rescaled_boxes
|
| 55 |
|
| 56 |
|
| 57 |
+
def deepseek():
|
| 58 |
+
|
| 59 |
+
# specify the path to the model
|
| 60 |
+
model_path = "deepseek-ai/deepseek-vl2-small"
|
| 61 |
+
vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
|
| 62 |
+
tokenizer = vl_chat_processor.tokenizer
|
| 63 |
+
|
| 64 |
+
vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
| 65 |
+
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
|
| 66 |
+
|
| 67 |
+
## single image conversation example
|
| 68 |
+
conversation = [
|
| 69 |
+
{
|
| 70 |
+
"role": "<|User|>",
|
| 71 |
+
"content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>.",
|
| 72 |
+
"images": ["./images/visual_grounding.jpeg"],
|
| 73 |
+
},
|
| 74 |
+
{"role": "<|Assistant|>", "content": ""},
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
## multiple images (or in-context learning) conversation example
|
| 78 |
+
# conversation = [
|
| 79 |
+
# {
|
| 80 |
+
# "role": "User",
|
| 81 |
+
# "content": "<image_placeholder>A dog wearing nothing in the foreground, "
|
| 82 |
+
# "<image_placeholder>a dog wearing a santa hat, "
|
| 83 |
+
# "<image_placeholder>a dog wearing a wizard outfit, and "
|
| 84 |
+
# "<image_placeholder>what's the dog wearing?",
|
| 85 |
+
# "images": [
|
| 86 |
+
# "images/dog_a.png",
|
| 87 |
+
# "images/dog_b.png",
|
| 88 |
+
# "images/dog_c.png",
|
| 89 |
+
# "images/dog_d.png",
|
| 90 |
+
# ],
|
| 91 |
+
# },
|
| 92 |
+
# {"role": "Assistant", "content": ""}
|
| 93 |
+
# ]
|
| 94 |
+
|
| 95 |
+
# load images and prepare for inputs
|
| 96 |
+
pil_images = load_pil_images(conversation)
|
| 97 |
+
prepare_inputs = vl_chat_processor(
|
| 98 |
+
conversations=conversation,
|
| 99 |
+
images=pil_images,
|
| 100 |
+
force_batchify=True,
|
| 101 |
+
system_prompt=""
|
| 102 |
+
).to(vl_gpt.device)
|
| 103 |
+
|
| 104 |
+
# run image encoder to get the image embeddings
|
| 105 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
| 106 |
+
|
| 107 |
+
# run the model to get the response
|
| 108 |
+
outputs = vl_gpt.language_model.generate(
|
| 109 |
+
inputs_embeds=inputs_embeds,
|
| 110 |
+
attention_mask=prepare_inputs.attention_mask,
|
| 111 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 112 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 113 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 114 |
+
max_new_tokens=512,
|
| 115 |
+
do_sample=False,
|
| 116 |
+
use_cache=True
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
| 120 |
+
print(f"{prepare_inputs['sft_format'][0]}", answer)
|
| 121 |
+
|
| 122 |
@spaces.GPU
|
| 123 |
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
| 124 |
+
|
| 125 |
+
deepseek()
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def run_example_old(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
| 129 |
model = models[model_id].eval()
|
| 130 |
processor = processors[model_id]
|
| 131 |
prompt = f"In this UI screenshot, what is the position of the element corresponding to the command \"{text_input}\" (with bbox)?"
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ torch
|
|
| 5 |
torchvision
|
| 6 |
transformers
|
| 7 |
accelerate==0.30.0
|
| 8 |
-
qwen-vl-utils
|
|
|
|
|
|
| 5 |
torchvision
|
| 6 |
transformers
|
| 7 |
accelerate==0.30.0
|
| 8 |
+
qwen-vl-utils
|
| 9 |
+
deepseek_vl
|