Ashrafb commited on
Commit
3358ca8
·
verified ·
1 Parent(s): 8e5d3ec

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +17 -121
main.py CHANGED
@@ -1,114 +1,14 @@
1
- from __future__ import annotations
2
- from fastapi import FastAPI, File, UploadFile
3
  from fastapi.responses import FileResponse
4
- from fastapi.staticfiles import StaticFiles
5
  import shutil
6
- import torch
7
-
8
- from vtoonify_model import Model
9
 
10
  app = FastAPI()
11
- model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
12
 
13
- def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
14
- if 'illustration' in style_type:
15
- self.color_transfer = True
16
- else:
17
- self.color_transfer = False
18
- if style_type not in self.style_types.keys():
19
- return None, 'Oops, wrong Style Type. Please select a valid model.'
20
- self.style_name = style_type
21
- model_path, ind = self.style_types[style_type]
22
- style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
23
- self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
24
- map_location=lambda storage, loc: storage)['g_ema'])
25
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
26
- exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
27
- with torch.no_grad():
28
- exstyle = self.vtoonify.zplus2wplus(exstyle)
29
- return exstyle, 'Model of %s loaded.'%(style_type)
30
-
31
- def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
32
- message = 'Error: no face detected! Please retry or change the photo.'
33
- paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
34
- instyle = None
35
- h, w, scale = 0, 0, 0
36
- if paras is not None:
37
- h,w,top,bottom,left,right,scale = paras
38
- H, W = int(bottom-top), int(right-left)
39
- # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
40
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
41
- if scale <= 0.75:
42
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
43
- if scale <= 0.375:
44
- frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
45
- frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
46
- with torch.no_grad():
47
- I = align_face(frame, self.landmarkpredictor)
48
- if I is not None:
49
- I = self.transform(I).unsqueeze(dim=0).to(self.device)
50
- instyle = self.pspencoder(I)
51
- instyle = self.vtoonify.zplus2wplus(instyle)
52
- message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left)
53
- else:
54
- frame = np.zeros((256,256,3), np.uint8)
55
- else:
56
- frame = np.zeros((256,256,3), np.uint8)
57
- if return_para:
58
- return frame, instyle, message, w, h, top, bottom, left, right, scale
59
- return frame, instyle, message
60
-
61
- #@torch.inference_mode()
62
- def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
63
- ) -> tuple[np.ndarray, torch.Tensor, str]:
64
- if image is None:
65
- return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
66
- frame = cv2.imread(image)
67
- if frame is None:
68
- return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
69
- frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
70
- return self.detect_and_align(frame, top, bottom, left, right)
71
-
72
- def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
73
- ) -> tuple[np.ndarray, torch.Tensor, str]:
74
- if video is None:
75
- return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
76
- video_cap = cv2.VideoCapture(video)
77
- if video_cap.get(7) == 0:
78
- video_cap.release()
79
- return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
80
- success, frame = video_cap.read()
81
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
82
- video_cap.release()
83
- return self.detect_and_align(frame, top, bottom, left, right)
84
-
85
-
86
- def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
87
- #print(style_type + ' ' + self.style_name)
88
- if instyle is None or aligned_face is None:
89
- return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
90
- if self.style_name != style_type:
91
- exstyle, _ = self.load_model(style_type)
92
- if exstyle is None:
93
- return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
94
- with torch.no_grad():
95
- if self.color_transfer:
96
- s_w = exstyle
97
- else:
98
- s_w = instyle.clone()
99
- s_w[:,:7] = exstyle[:,:7]
100
-
101
- x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
102
- x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
103
- scale_factor=0.5, recompute_scale_factor=False).detach()
104
- inputs = torch.cat((x, x_p/16.), dim=1)
105
- y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
106
- y_tilde = torch.clamp(y_tilde, -1, 1)
107
- print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type))
108
- return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
109
-
110
  @app.post("/upload/")
111
- async def process_image(file: UploadFile = File(...)):
112
  # Save the uploaded image locally
113
  with open("uploaded_image.jpg", "wb") as buffer:
114
  shutil.copyfileobj(file.file, buffer)
@@ -117,22 +17,18 @@ async def process_image(file: UploadFile = File(...)):
117
  exstyle, load_info = model.load_model('cartoon1')
118
 
119
  # Process the uploaded image
120
- top, bottom, left, right = 200, 200, 200, 200
121
- aligned_face, _, input_info = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
122
- processed_image, message = model.image_toonify(aligned_face, instyle=exstyle, exstyle=exstyle, style_degree=0.5, style_type='cartoon1')
 
 
 
 
 
123
 
124
- # Save the processed image
125
- with open("result_image.jpg", "wb") as result_buffer:
126
- result_buffer.write(processed_image)
127
 
128
  # Return the processed image
129
- return FileResponse("result_image.jpg", media_type="image/jpeg", headers={"Content-Disposition": "attachment; filename=result_image.jpg"})
130
-
131
- app.mount("/", StaticFiles(directory="AB", html=True), name="static")
132
-
133
- @app.get("/")
134
- def index() -> FileResponse:
135
- return FileResponse(path="/app/AB/index.html", media_type="text/html")
136
-
137
-
138
-
 
1
+ from fastapi import FastAPI, File, UploadFile, HTTPException
 
2
  from fastapi.responses import FileResponse
3
+ import cv2
4
  import shutil
5
+ from model import Model # Import your model class here
 
 
6
 
7
  app = FastAPI()
8
+ model = Model(device='cpu') # Initialize your model with the appropriate device
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  @app.post("/upload/")
11
+ async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
12
  # Save the uploaded image locally
13
  with open("uploaded_image.jpg", "wb") as buffer:
14
  shutil.copyfileobj(file.file, buffer)
 
17
  exstyle, load_info = model.load_model('cartoon1')
18
 
19
  # Process the uploaded image
20
+ # Replace these values with the actual bounding box coordinates
21
+ aligned_face, instyle, message = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
22
+
23
+ # Process the aligned face further if needed
24
+ # For example, you can pass it to the image_toonify method
25
+ style_degree = 0.5
26
+ style_type = 'cartoon1' # Adjust this based on the actual style type
27
+ result_image, message = model.image_toonify(aligned_face, instyle, exstyle, style_degree, style_type)
28
 
29
+ # Save the result image locally
30
+ result_image_path = "result_image.jpg"
31
+ cv2.imwrite(result_image_path, result_image)
32
 
33
  # Return the processed image
34
+ return FileResponse(result_image_path, media_type="image/jpeg", headers={"Content-Disposition": "attachment; filename=result_image.jpg"})