Update main.py
Browse files
main.py
CHANGED
@@ -10,6 +10,103 @@ from vtoonify_model import Model
|
|
10 |
app = FastAPI()
|
11 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@app.post("/upload/")
|
14 |
async def process_image(file: UploadFile = File(...)):
|
15 |
# Save the uploaded image locally
|
@@ -20,10 +117,9 @@ async def process_image(file: UploadFile = File(...)):
|
|
20 |
exstyle, load_info = model.load_model('cartoon1')
|
21 |
|
22 |
# Process the uploaded image
|
23 |
-
|
24 |
-
top, bottom, left, right = 200, 200,200, 200
|
25 |
aligned_face, _, input_info = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
|
26 |
-
processed_image, message = model.image_toonify(aligned_face, exstyle,
|
27 |
|
28 |
# Save the processed image
|
29 |
with open("result_image.jpg", "wb") as result_buffer:
|
|
|
10 |
app = FastAPI()
|
11 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
+
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
|
14 |
+
if 'illustration' in style_type:
|
15 |
+
self.color_transfer = True
|
16 |
+
else:
|
17 |
+
self.color_transfer = False
|
18 |
+
if style_type not in self.style_types.keys():
|
19 |
+
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
20 |
+
self.style_name = style_type
|
21 |
+
model_path, ind = self.style_types[style_type]
|
22 |
+
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
23 |
+
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
24 |
+
map_location=lambda storage, loc: storage)['g_ema'])
|
25 |
+
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
|
26 |
+
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
|
27 |
+
with torch.no_grad():
|
28 |
+
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
29 |
+
return exstyle, 'Model of %s loaded.'%(style_type)
|
30 |
+
|
31 |
+
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
32 |
+
message = 'Error: no face detected! Please retry or change the photo.'
|
33 |
+
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
34 |
+
instyle = None
|
35 |
+
h, w, scale = 0, 0, 0
|
36 |
+
if paras is not None:
|
37 |
+
h,w,top,bottom,left,right,scale = paras
|
38 |
+
H, W = int(bottom-top), int(right-left)
|
39 |
+
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
|
40 |
+
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
|
41 |
+
if scale <= 0.75:
|
42 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
43 |
+
if scale <= 0.375:
|
44 |
+
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
45 |
+
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
|
46 |
+
with torch.no_grad():
|
47 |
+
I = align_face(frame, self.landmarkpredictor)
|
48 |
+
if I is not None:
|
49 |
+
I = self.transform(I).unsqueeze(dim=0).to(self.device)
|
50 |
+
instyle = self.pspencoder(I)
|
51 |
+
instyle = self.vtoonify.zplus2wplus(instyle)
|
52 |
+
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left)
|
53 |
+
else:
|
54 |
+
frame = np.zeros((256,256,3), np.uint8)
|
55 |
+
else:
|
56 |
+
frame = np.zeros((256,256,3), np.uint8)
|
57 |
+
if return_para:
|
58 |
+
return frame, instyle, message, w, h, top, bottom, left, right, scale
|
59 |
+
return frame, instyle, message
|
60 |
+
|
61 |
+
#@torch.inference_mode()
|
62 |
+
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
63 |
+
) -> tuple[np.ndarray, torch.Tensor, str]:
|
64 |
+
if image is None:
|
65 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
66 |
+
frame = cv2.imread(image)
|
67 |
+
if frame is None:
|
68 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
|
69 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
70 |
+
return self.detect_and_align(frame, top, bottom, left, right)
|
71 |
+
|
72 |
+
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
73 |
+
) -> tuple[np.ndarray, torch.Tensor, str]:
|
74 |
+
if video is None:
|
75 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
76 |
+
video_cap = cv2.VideoCapture(video)
|
77 |
+
if video_cap.get(7) == 0:
|
78 |
+
video_cap.release()
|
79 |
+
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
|
80 |
+
success, frame = video_cap.read()
|
81 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
82 |
+
video_cap.release()
|
83 |
+
return self.detect_and_align(frame, top, bottom, left, right)
|
84 |
+
|
85 |
+
|
86 |
+
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
|
87 |
+
#print(style_type + ' ' + self.style_name)
|
88 |
+
if instyle is None or aligned_face is None:
|
89 |
+
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
90 |
+
if self.style_name != style_type:
|
91 |
+
exstyle, _ = self.load_model(style_type)
|
92 |
+
if exstyle is None:
|
93 |
+
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
94 |
+
with torch.no_grad():
|
95 |
+
if self.color_transfer:
|
96 |
+
s_w = exstyle
|
97 |
+
else:
|
98 |
+
s_w = instyle.clone()
|
99 |
+
s_w[:,:7] = exstyle[:,:7]
|
100 |
+
|
101 |
+
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
|
102 |
+
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
103 |
+
scale_factor=0.5, recompute_scale_factor=False).detach()
|
104 |
+
inputs = torch.cat((x, x_p/16.), dim=1)
|
105 |
+
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
|
106 |
+
y_tilde = torch.clamp(y_tilde, -1, 1)
|
107 |
+
print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type))
|
108 |
+
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
|
109 |
+
|
110 |
@app.post("/upload/")
|
111 |
async def process_image(file: UploadFile = File(...)):
|
112 |
# Save the uploaded image locally
|
|
|
117 |
exstyle, load_info = model.load_model('cartoon1')
|
118 |
|
119 |
# Process the uploaded image
|
120 |
+
top, bottom, left, right = 200, 200, 200, 200
|
|
|
121 |
aligned_face, _, input_info = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
|
122 |
+
processed_image, message = model.image_toonify(aligned_face, instyle=exstyle, exstyle=exstyle, style_degree=0.5, style_type='cartoon1')
|
123 |
|
124 |
# Save the processed image
|
125 |
with open("result_image.jpg", "wb") as result_buffer:
|