|
from __future__ import annotations |
|
from fastapi import FastAPI, File, UploadFile |
|
from fastapi.responses import FileResponse |
|
from fastapi.staticfiles import StaticFiles |
|
import shutil |
|
import torch |
|
|
|
from vtoonify_model import Model |
|
|
|
app = FastAPI() |
|
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]: |
|
if 'illustration' in style_type: |
|
self.color_transfer = True |
|
else: |
|
self.color_transfer = False |
|
if style_type not in self.style_types.keys(): |
|
return None, 'Oops, wrong Style Type. Please select a valid model.' |
|
self.style_name = style_type |
|
model_path, ind = self.style_types[style_type] |
|
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy') |
|
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path), |
|
map_location=lambda storage, loc: storage)['g_ema']) |
|
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item() |
|
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device) |
|
with torch.no_grad(): |
|
exstyle = self.vtoonify.zplus2wplus(exstyle) |
|
return exstyle, 'Model of %s loaded.'%(style_type) |
|
|
|
def detect_and_align(self, frame, top, bottom, left, right, return_para=False): |
|
message = 'Error: no face detected! Please retry or change the photo.' |
|
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom]) |
|
instyle = None |
|
h, w, scale = 0, 0, 0 |
|
if paras is not None: |
|
h,w,top,bottom,left,right,scale = paras |
|
H, W = int(bottom-top), int(right-left) |
|
|
|
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) |
|
if scale <= 0.75: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
if scale <= 0.375: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
with torch.no_grad(): |
|
I = align_face(frame, self.landmarkpredictor) |
|
if I is not None: |
|
I = self.transform(I).unsqueeze(dim=0).to(self.device) |
|
instyle = self.pspencoder(I) |
|
instyle = self.vtoonify.zplus2wplus(instyle) |
|
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left) |
|
else: |
|
frame = np.zeros((256,256,3), np.uint8) |
|
else: |
|
frame = np.zeros((256,256,3), np.uint8) |
|
if return_para: |
|
return frame, instyle, message, w, h, top, bottom, left, right, scale |
|
return frame, instyle, message |
|
|
|
|
|
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int |
|
) -> tuple[np.ndarray, torch.Tensor, str]: |
|
if image is None: |
|
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.' |
|
frame = cv2.imread(image) |
|
if frame is None: |
|
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.' |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
return self.detect_and_align(frame, top, bottom, left, right) |
|
|
|
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int |
|
) -> tuple[np.ndarray, torch.Tensor, str]: |
|
if video is None: |
|
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.' |
|
video_cap = cv2.VideoCapture(video) |
|
if video_cap.get(7) == 0: |
|
video_cap.release() |
|
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.' |
|
success, frame = video_cap.read() |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
video_cap.release() |
|
return self.detect_and_align(frame, top, bottom, left, right) |
|
|
|
|
|
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]: |
|
|
|
if instyle is None or aligned_face is None: |
|
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.' |
|
if self.style_name != style_type: |
|
exstyle, _ = self.load_model(style_type) |
|
if exstyle is None: |
|
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.' |
|
with torch.no_grad(): |
|
if self.color_transfer: |
|
s_w = exstyle |
|
else: |
|
s_w = instyle.clone() |
|
s_w[:,:7] = exstyle[:,:7] |
|
|
|
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device) |
|
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], |
|
scale_factor=0.5, recompute_scale_factor=False).detach() |
|
inputs = torch.cat((x, x_p/16.), dim=1) |
|
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree) |
|
y_tilde = torch.clamp(y_tilde, -1, 1) |
|
print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type)) |
|
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name) |
|
|
|
@app.post("/upload/") |
|
async def process_image(file: UploadFile = File(...)): |
|
|
|
with open("uploaded_image.jpg", "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
|
|
|
|
exstyle, load_info = model.load_model('cartoon1') |
|
|
|
|
|
top, bottom, left, right = 200, 200, 200, 200 |
|
aligned_face, _, input_info = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right) |
|
processed_image, message = model.image_toonify(aligned_face, instyle=exstyle, exstyle=exstyle, style_degree=0.5, style_type='cartoon1') |
|
|
|
|
|
with open("result_image.jpg", "wb") as result_buffer: |
|
result_buffer.write(processed_image) |
|
|
|
|
|
return FileResponse("result_image.jpg", media_type="image/jpeg", headers={"Content-Disposition": "attachment; filename=result_image.jpg"}) |
|
|
|
app.mount("/", StaticFiles(directory="AB", html=True), name="static") |
|
|
|
@app.get("/") |
|
def index() -> FileResponse: |
|
return FileResponse(path="/app/AB/index.html", media_type="text/html") |
|
|
|
|
|
|
|
|