File size: 9,885 Bytes
7c33baa b43f043 ebb8d7c ea1444b 7c33baa b43f043 7c33baa b43f043 ec95059 ef2a14d eb9648f ef2a14d 72532eb c4d7499 72532eb c4d7499 ebb8d7c 99f1eb3 b43f043 c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 ebb8d7c c4d7499 60ffb70 ec95059 8e5c44f ec95059 8e5c44f c4d7499 ec95059 8e5c44f ec95059 8e5c44f ec95059 c4d7499 ebb8d7c 0b1eb16 4ce8314 61b6cd2 b43f043 7c33baa eb9648f 7c33baa 4ce8314 7c33baa 4ce8314 99f1eb3 b43f043 99f1eb3 ebb8d7c 99f1eb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from __future__ import annotations
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
from fastapi.staticfiles import StaticFiles
import torch
import shutil
import cv2
import numpy as np
import dlib
from torchvision import transforms
import torch.nn.functional as F
import gradio as gr
import pathlib
import sys
sys.path.insert(0, 'vtoonify')
from vtoonify_model import Model
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
import torch
import torch.nn as nn
import numpy as np
import dlib
import cv2
from model.vtoonify import VToonify
from model.bisenet.model import BiSeNet
import torch.nn.functional as F
from torchvision import transforms
from model.encoder.align_all_parallel import align_face
import gc
import huggingface_hub
import os
from io import BytesIO
app = FastAPI()
MODEL_REPO = 'PKUWilliamYang/VToonify'
class Model:
def __init__(self, device):
super().__init__()
self.device = device
self.style_types = {
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
}
self.landmarkpredictor = self._create_dlib_landmark_model()
self.parsingpredictor = self._create_parsing_model()
self.pspencoder = self._load_encoder()
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.vtoonify, self.exstyle = self._load_default_model()
self.color_transfer = False
self.style_name = 'cartoon1'
self.video_limit_cpu = 100
self.video_limit_gpu = 300
def _create_dlib_landmark_model(self):
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/shape_predictor_68_face_landmarks.dat'))
def _create_parsing_model(self):
parsingpredictor = BiSeNet(n_classes=19)
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
map_location=lambda storage, loc: storage))
parsingpredictor.to(self.device).eval()
return parsingpredictor
def _load_encoder(self) -> nn.Module:
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
return load_psp_standalone(style_encoder_path, self.device)
def _load_default_model(self) -> tuple[torch.Tensor, str]:
vtoonify = VToonify(backbone='dualstylegan')
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
map_location=lambda storage, loc: storage)['g_ema'])
vtoonify.to(self.device)
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
with torch.no_grad():
exstyle = vtoonify.zplus2wplus(exstyle)
return vtoonify, exstyle
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
if 'illustration' in style_type:
self.color_transfer = True
else:
self.color_transfer = False
if style_type not in self.style_types.keys():
return None, 'Oops, wrong Style Type. Please select a valid model.'
self.style_name = style_type
model_path, ind = self.style_types[style_type]
style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
map_location=lambda storage, loc: storage)['g_ema'])
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
with torch.no_grad():
exstyle = self.vtoonify.zplus2wplus(exstyle)
return exstyle, 'Model of %s loaded.' % (style_type)
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
message = 'Error: no face detected! Please retry or change the photo.'
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
instyle = None
h, w, scale = 0, 0, 0
if paras is not None:
h, w, top, bottom, left, right, scale = paras
H, W = int(bottom-top), int(right-left)
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
if scale <= 0.75:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
if scale <= 0.375:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
with torch.no_grad():
I = align_face(frame, self.landmarkpredictor)
if I is not None:
I = self.transform(I).unsqueeze(dim=0).to(self.device)
instyle = self.pspencoder(I)
instyle = self.vtoonify.zplus2wplus(instyle)
message = 'Successfully rescale the frame to (%d, %d)' % (bottom-top, right-left)
else:
frame = np.zeros((256, 256, 3), np.uint8)
else:
frame = np.zeros((256, 256, 3), np.uint8)
if return_para:
return frame, instyle, message, w, h, top, bottom, left, right, scale
return frame, instyle, message
#@torch.inference_mode()
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
) -> tuple[np.ndarray, torch.Tensor, str]:
if image is None:
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
frame = cv2.imread(image)
if frame is None:
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return self.detect_and_align(frame, top, bottom, left, right)
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
) -> tuple[np.ndarray, torch.Tensor, str]:
if video is None:
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
video_cap = cv2.VideoCapture(video)
if video_cap.get(7) == 0:
video_cap.release()
return np.zeros((256, 256, 3), np.uint8), torch.zeros(1, 18, 512).to(self.device), 'Error: fail to load the video.'
success, frame = video_cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
video_cap.release()
return self.detect_and_align(frame, top, bottom, left, right)
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
if instyle is None or aligned_face is None:
return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
if self.style_name != style_type:
exstyle, _ = self.load_model(style_type)
if exstyle is None:
return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
with torch.no_grad():
s_w = instyle.clone()
s_w[:, :7] = exstyle[:, :7]
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
scale_factor=0.5, recompute_scale_factor=False).detach()
inputs = torch.cat((x, x_p / 16.), dim=1)
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
y_tilde = torch.clamp(y_tilde, -1, 1)
print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s' % (self.style_name)
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
@app.post("/upload/")
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
if model is None:
return {"error": "Model not loaded."}
# Save the uploaded image locally
with open("uploaded_image.jpg", "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Process the uploaded image
aligned_face, instyle, message = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right)
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1')
# Convert processed image to bytes
image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes()
# Return the processed image as a streaming response
return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg")
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/AB/index.html", media_type="text/html")
|