Update main.py
Browse files
main.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
-
from fastapi import FastAPI, File, UploadFile
|
| 3 |
-
from fastapi.responses import FileResponse
|
| 4 |
-
from fastapi.staticfiles import StaticFiles
|
| 5 |
from fastapi import FastAPI, File, UploadFile, Form
|
| 6 |
-
from fastapi.responses import
|
|
|
|
| 7 |
import torch
|
| 8 |
import shutil
|
| 9 |
import cv2
|
|
@@ -12,33 +10,18 @@ import dlib
|
|
| 12 |
from torchvision import transforms
|
| 13 |
import torch.nn.functional as F
|
| 14 |
from vtoonify_model import Model # Importing the Model class from vtoonify_model.py
|
| 15 |
-
|
| 16 |
-
import gradio as gr
|
| 17 |
-
import pathlib
|
| 18 |
-
import sys
|
| 19 |
-
sys.path.insert(0, 'vtoonify')
|
| 20 |
-
|
| 21 |
-
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
|
| 22 |
-
import torch
|
| 23 |
-
import torch.nn as nn
|
| 24 |
-
import numpy as np
|
| 25 |
-
import dlib
|
| 26 |
-
import cv2
|
| 27 |
from model.vtoonify import VToonify
|
| 28 |
from model.bisenet.model import BiSeNet
|
| 29 |
-
import torch.nn.functional as F
|
| 30 |
-
from torchvision import transforms
|
| 31 |
-
from model.encoder.align_all_parallel import align_face
|
| 32 |
-
import gc
|
| 33 |
import huggingface_hub
|
| 34 |
import os
|
|
|
|
| 35 |
|
| 36 |
app = FastAPI()
|
| 37 |
-
model = None
|
| 38 |
|
| 39 |
MODEL_REPO = 'PKUWilliamYang/VToonify'
|
| 40 |
|
| 41 |
-
class Model
|
| 42 |
def __init__(self, device):
|
| 43 |
super().__init__()
|
| 44 |
|
|
@@ -53,19 +36,17 @@ class Model():
|
|
| 53 |
self.pspencoder = self._load_encoder()
|
| 54 |
self.transform = transforms.Compose([
|
| 55 |
transforms.ToTensor(),
|
| 56 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
|
| 57 |
-
|
| 58 |
|
| 59 |
self.vtoonify, self.exstyle = self._load_default_model()
|
| 60 |
self.color_transfer = False
|
| 61 |
self.style_name = 'cartoon1'
|
| 62 |
self.video_limit_cpu = 100
|
| 63 |
self.video_limit_gpu = 300
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 68 |
-
'models/shape_predictor_68_face_landmarks.dat'))
|
| 69 |
|
| 70 |
def _create_parsing_model(self):
|
| 71 |
parsingpredictor = BiSeNet(n_classes=19)
|
|
@@ -75,16 +56,16 @@ class Model():
|
|
| 75 |
return parsingpredictor
|
| 76 |
|
| 77 |
def _load_encoder(self) -> nn.Module:
|
| 78 |
-
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO,'models/encoder.pt')
|
| 79 |
return load_psp_standalone(style_encoder_path, self.device)
|
| 80 |
|
| 81 |
def _load_default_model(self) -> tuple[torch.Tensor, str]:
|
| 82 |
-
vtoonify = VToonify(backbone
|
| 83 |
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 84 |
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
| 85 |
map_location=lambda storage, loc: storage)['g_ema'])
|
| 86 |
vtoonify.to(self.device)
|
| 87 |
-
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
|
| 88 |
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
|
| 89 |
with torch.no_grad():
|
| 90 |
exstyle = vtoonify.zplus2wplus(exstyle)
|
|
@@ -99,14 +80,14 @@ class Model():
|
|
| 99 |
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
| 100 |
self.style_name = style_type
|
| 101 |
model_path, ind = self.style_types[style_type]
|
| 102 |
-
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
| 103 |
-
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
| 104 |
map_location=lambda storage, loc: storage)['g_ema'])
|
| 105 |
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
|
| 106 |
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
|
| 107 |
with torch.no_grad():
|
| 108 |
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
| 109 |
-
return exstyle, 'Model of %s loaded.'%(style_type)
|
| 110 |
|
| 111 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
| 112 |
message = 'Error: no face detected! Please retry or change the photo.'
|
|
@@ -114,7 +95,7 @@ class Model():
|
|
| 114 |
instyle = None
|
| 115 |
h, w, scale = 0, 0, 0
|
| 116 |
if paras is not None:
|
| 117 |
-
h,w,top,bottom,left,right,scale = paras
|
| 118 |
H, W = int(bottom-top), int(right-left)
|
| 119 |
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
|
| 120 |
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
|
|
@@ -129,11 +110,11 @@ class Model():
|
|
| 129 |
I = self.transform(I).unsqueeze(dim=0).to(self.device)
|
| 130 |
instyle = self.pspencoder(I)
|
| 131 |
instyle = self.vtoonify.zplus2wplus(instyle)
|
| 132 |
-
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left)
|
| 133 |
else:
|
| 134 |
-
frame = np.zeros((256,256,3), np.uint8)
|
| 135 |
else:
|
| 136 |
-
frame = np.zeros((256,256,3), np.uint8)
|
| 137 |
if return_para:
|
| 138 |
return frame, instyle, message, w, h, top, bottom, left, right, scale
|
| 139 |
return frame, instyle, message
|
|
@@ -142,21 +123,21 @@ class Model():
|
|
| 142 |
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
| 143 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 144 |
if image is None:
|
| 145 |
-
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
| 146 |
frame = cv2.imread(image)
|
| 147 |
if frame is None:
|
| 148 |
-
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
|
| 149 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 150 |
return self.detect_and_align(frame, top, bottom, left, right)
|
| 151 |
|
| 152 |
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
| 153 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 154 |
if video is None:
|
| 155 |
-
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
| 156 |
video_cap = cv2.VideoCapture(video)
|
| 157 |
if video_cap.get(7) == 0:
|
| 158 |
video_cap.release()
|
| 159 |
-
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
|
| 160 |
success, frame = video_cap.read()
|
| 161 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 162 |
video_cap.release()
|
|
@@ -166,11 +147,11 @@ class Model():
|
|
| 166 |
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
|
| 167 |
#print(style_type + ' ' + self.style_name)
|
| 168 |
if instyle is None or aligned_face is None:
|
| 169 |
-
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
| 170 |
if self.style_name != style_type:
|
| 171 |
exstyle, _ = self.load_model(style_type)
|
| 172 |
if exstyle is None:
|
| 173 |
-
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
| 174 |
with torch.no_grad():
|
| 175 |
if self.color_transfer:
|
| 176 |
s_w = exstyle
|
|
@@ -182,17 +163,13 @@ class Model():
|
|
| 182 |
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
| 183 |
scale_factor=0.5, recompute_scale_factor=False).detach()
|
| 184 |
inputs = torch.cat((x, x_p/16.), dim=1)
|
| 185 |
-
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s
|
| 186 |
y_tilde = torch.clamp(y_tilde, -1, 1)
|
| 187 |
-
print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type))
|
| 188 |
-
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
|
| 189 |
-
|
| 190 |
|
|
|
|
| 191 |
|
| 192 |
-
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 193 |
-
|
| 194 |
-
from fastapi.responses import StreamingResponse
|
| 195 |
-
from io import BytesIO
|
| 196 |
|
| 197 |
@app.post("/upload/")
|
| 198 |
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
|
@@ -216,6 +193,7 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
|
|
| 216 |
|
| 217 |
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
|
| 218 |
|
|
|
|
| 219 |
@app.get("/")
|
| 220 |
def index() -> FileResponse:
|
| 221 |
return FileResponse(path="/app/AB/index.html", media_type="text/html")
|
|
|
|
| 1 |
from __future__ import annotations
|
|
|
|
|
|
|
|
|
|
| 2 |
from fastapi import FastAPI, File, UploadFile, Form
|
| 3 |
+
from fastapi.responses import StreamingResponse
|
| 4 |
+
from fastapi.staticfiles import StaticFiles
|
| 5 |
import torch
|
| 6 |
import shutil
|
| 7 |
import cv2
|
|
|
|
| 10 |
from torchvision import transforms
|
| 11 |
import torch.nn.functional as F
|
| 12 |
from vtoonify_model import Model # Importing the Model class from vtoonify_model.py
|
| 13 |
+
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2, align_face
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from model.vtoonify import VToonify
|
| 15 |
from model.bisenet.model import BiSeNet
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
import huggingface_hub
|
| 17 |
import os
|
| 18 |
+
from io import BytesIO
|
| 19 |
|
| 20 |
app = FastAPI()
|
|
|
|
| 21 |
|
| 22 |
MODEL_REPO = 'PKUWilliamYang/VToonify'
|
| 23 |
|
| 24 |
+
class Model:
|
| 25 |
def __init__(self, device):
|
| 26 |
super().__init__()
|
| 27 |
|
|
|
|
| 36 |
self.pspencoder = self._load_encoder()
|
| 37 |
self.transform = transforms.Compose([
|
| 38 |
transforms.ToTensor(),
|
| 39 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 40 |
+
])
|
| 41 |
|
| 42 |
self.vtoonify, self.exstyle = self._load_default_model()
|
| 43 |
self.color_transfer = False
|
| 44 |
self.style_name = 'cartoon1'
|
| 45 |
self.video_limit_cpu = 100
|
| 46 |
self.video_limit_gpu = 300
|
| 47 |
+
|
| 48 |
+
def _create_dlib_landmark_model(self):
|
| 49 |
+
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/shape_predictor_68_face_landmarks.dat'))
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def _create_parsing_model(self):
|
| 52 |
parsingpredictor = BiSeNet(n_classes=19)
|
|
|
|
| 56 |
return parsingpredictor
|
| 57 |
|
| 58 |
def _load_encoder(self) -> nn.Module:
|
| 59 |
+
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
|
| 60 |
return load_psp_standalone(style_encoder_path, self.device)
|
| 61 |
|
| 62 |
def _load_default_model(self) -> tuple[torch.Tensor, str]:
|
| 63 |
+
vtoonify = VToonify(backbone='dualstylegan')
|
| 64 |
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 65 |
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
| 66 |
map_location=lambda storage, loc: storage)['g_ema'])
|
| 67 |
vtoonify.to(self.device)
|
| 68 |
+
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
|
| 69 |
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
|
| 70 |
with torch.no_grad():
|
| 71 |
exstyle = vtoonify.zplus2wplus(exstyle)
|
|
|
|
| 80 |
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
| 81 |
self.style_name = style_type
|
| 82 |
model_path, ind = self.style_types[style_type]
|
| 83 |
+
style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
|
| 84 |
+
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
|
| 85 |
map_location=lambda storage, loc: storage)['g_ema'])
|
| 86 |
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
|
| 87 |
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
|
| 88 |
with torch.no_grad():
|
| 89 |
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
| 90 |
+
return exstyle, 'Model of %s loaded.' % (style_type)
|
| 91 |
|
| 92 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
| 93 |
message = 'Error: no face detected! Please retry or change the photo.'
|
|
|
|
| 95 |
instyle = None
|
| 96 |
h, w, scale = 0, 0, 0
|
| 97 |
if paras is not None:
|
| 98 |
+
h, w, top, bottom, left, right, scale = paras
|
| 99 |
H, W = int(bottom-top), int(right-left)
|
| 100 |
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
|
| 101 |
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
|
|
|
|
| 110 |
I = self.transform(I).unsqueeze(dim=0).to(self.device)
|
| 111 |
instyle = self.pspencoder(I)
|
| 112 |
instyle = self.vtoonify.zplus2wplus(instyle)
|
| 113 |
+
message = 'Successfully rescale the frame to (%d, %d)' % (bottom-top, right-left)
|
| 114 |
else:
|
| 115 |
+
frame = np.zeros((256, 256, 3), np.uint8)
|
| 116 |
else:
|
| 117 |
+
frame = np.zeros((256, 256, 3), np.uint8)
|
| 118 |
if return_para:
|
| 119 |
return frame, instyle, message, w, h, top, bottom, left, right, scale
|
| 120 |
return frame, instyle, message
|
|
|
|
| 123 |
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
| 124 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 125 |
if image is None:
|
| 126 |
+
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
|
| 127 |
frame = cv2.imread(image)
|
| 128 |
if frame is None:
|
| 129 |
+
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
|
| 130 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 131 |
return self.detect_and_align(frame, top, bottom, left, right)
|
| 132 |
|
| 133 |
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
| 134 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 135 |
if video is None:
|
| 136 |
+
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
|
| 137 |
video_cap = cv2.VideoCapture(video)
|
| 138 |
if video_cap.get(7) == 0:
|
| 139 |
video_cap.release()
|
| 140 |
+
return np.zeros((256, 256, 3), np.uint8), torch.zeros(1, 18, 512).to(self.device), 'Error: fail to load the video.'
|
| 141 |
success, frame = video_cap.read()
|
| 142 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 143 |
video_cap.release()
|
|
|
|
| 147 |
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
|
| 148 |
#print(style_type + ' ' + self.style_name)
|
| 149 |
if instyle is None or aligned_face is None:
|
| 150 |
+
return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
| 151 |
if self.style_name != style_type:
|
| 152 |
exstyle, _ = self.load_model(style_type)
|
| 153 |
if exstyle is None:
|
| 154 |
+
return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
| 155 |
with torch.no_grad():
|
| 156 |
if self.color_transfer:
|
| 157 |
s_w = exstyle
|
|
|
|
| 163 |
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
| 164 |
scale_factor=0.5, recompute_scale_factor=False).detach()
|
| 165 |
inputs = torch.cat((x, x_p/16.), dim=1)
|
| 166 |
+
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
|
| 167 |
y_tilde = torch.clamp(y_tilde, -1, 1)
|
| 168 |
+
print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
|
| 169 |
+
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s' % (self.style_name)
|
|
|
|
| 170 |
|
| 171 |
+
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
@app.post("/upload/")
|
| 175 |
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
|
|
|
| 193 |
|
| 194 |
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
|
| 195 |
|
| 196 |
+
|
| 197 |
@app.get("/")
|
| 198 |
def index() -> FileResponse:
|
| 199 |
return FileResponse(path="/app/AB/index.html", media_type="text/html")
|